神经系统疾病中乳酸和乳酸化的改变。

IF 6.7 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2026-05-01 Epub Date: 2025-06-19 DOI:10.4103/NRR.NRR-D-24-01344
Yu Gu, Keyang Chen, Chunyan Lei, Xinglong Yang, Lu Wang, Linhu Zhao, Wen Jiang, Qionghua Deng
{"title":"神经系统疾病中乳酸和乳酸化的改变。","authors":"Yu Gu, Keyang Chen, Chunyan Lei, Xinglong Yang, Lu Wang, Linhu Zhao, Wen Jiang, Qionghua Deng","doi":"10.4103/NRR.NRR-D-24-01344","DOIUrl":null,"url":null,"abstract":"<p><p>Research into lactylation modifications across various target organs in both health and disease has gained significant attention. Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications. Lactate, once considered merely a byproduct of anaerobic metabolism, has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system. Furthermore, recent studies have emphasized the significant role of lactate in numerous neurological diseases, including Alzheimer's disease, Parkinson's disease, acute cerebral ischemic stroke, multiple sclerosis, Huntington's disease, and myasthenia gravis. The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases, aiming to clarify their mechanisms of action and identify potential therapeutic targets. As such, this work provides an overview of the metabolic regulatory roles of lactate in various disorders, emphasizing its involvement in the regulation of brain function. Additionally, the specific mechanisms of brain lactate metabolism are discussed, suggesting the unique roles of lactate in modulating brain function. As a critical aspect of lactate function, lactylation modifications, including both histone and non-histone lactylation, are explored, with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications, such as lactylation writers and erasers. The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized, revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders. Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1681-1697"},"PeriodicalIF":6.7000,"publicationDate":"2026-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactate and lactylation modifications in neurological disorders.\",\"authors\":\"Yu Gu, Keyang Chen, Chunyan Lei, Xinglong Yang, Lu Wang, Linhu Zhao, Wen Jiang, Qionghua Deng\",\"doi\":\"10.4103/NRR.NRR-D-24-01344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research into lactylation modifications across various target organs in both health and disease has gained significant attention. Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications. Lactate, once considered merely a byproduct of anaerobic metabolism, has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system. Furthermore, recent studies have emphasized the significant role of lactate in numerous neurological diseases, including Alzheimer's disease, Parkinson's disease, acute cerebral ischemic stroke, multiple sclerosis, Huntington's disease, and myasthenia gravis. The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases, aiming to clarify their mechanisms of action and identify potential therapeutic targets. As such, this work provides an overview of the metabolic regulatory roles of lactate in various disorders, emphasizing its involvement in the regulation of brain function. Additionally, the specific mechanisms of brain lactate metabolism are discussed, suggesting the unique roles of lactate in modulating brain function. As a critical aspect of lactate function, lactylation modifications, including both histone and non-histone lactylation, are explored, with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications, such as lactylation writers and erasers. The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized, revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders. Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"1681-1697\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2026-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-01344\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01344","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:对健康和疾病中不同靶器官的乳酸化修饰的研究已经引起了人们的极大关注。许多重要的生命过程和疾病的发生不仅与蛋白质丰度有关,而且主要受各种翻译后蛋白质修饰的调节。乳酸,曾经被认为只是无氧代谢的副产物,现在已经成为神经系统中重要的能量底物和信号分子,参与了神经系统的生理和病理过程。此外,最近的研究强调了乳酸在许多神经系统疾病中的重要作用,包括阿尔茨海默病、帕金森病、急性缺血性脑卒中、多发性硬化症、亨廷顿氏病和重症肌无力。本文就神经系统疾病中乳酸和乳酸化修饰的研究现状进行综述,旨在阐明其作用机制,寻找潜在的治疗靶点。因此,本研究概述了乳酸盐在各种疾病中的代谢调节作用,强调了其在脑功能调节中的作用。此外,还讨论了脑乳酸代谢的具体机制,提示乳酸在调节脑功能中的独特作用。作为乳酸功能的一个关键方面,乳酸化修饰,包括组蛋白和非组蛋白的乳酸化,被探索,重点是在确定这些修饰的关键调控酶的最新进展,如乳酸化书写和擦除。本文综述了乳酸代谢异常在各种神经系统疾病中的作用和具体机制,揭示了乳酸作为一种信号分子参与脑功能的调节,乳酸代谢异常与各种神经系统疾病的进展有关。未来的研究应集中在进一步阐明乳酸和乳酸化修饰的分子机制,并探索它们作为神经系统疾病治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lactate and lactylation modifications in neurological disorders.

Research into lactylation modifications across various target organs in both health and disease has gained significant attention. Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications. Lactate, once considered merely a byproduct of anaerobic metabolism, has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system. Furthermore, recent studies have emphasized the significant role of lactate in numerous neurological diseases, including Alzheimer's disease, Parkinson's disease, acute cerebral ischemic stroke, multiple sclerosis, Huntington's disease, and myasthenia gravis. The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases, aiming to clarify their mechanisms of action and identify potential therapeutic targets. As such, this work provides an overview of the metabolic regulatory roles of lactate in various disorders, emphasizing its involvement in the regulation of brain function. Additionally, the specific mechanisms of brain lactate metabolism are discussed, suggesting the unique roles of lactate in modulating brain function. As a critical aspect of lactate function, lactylation modifications, including both histone and non-histone lactylation, are explored, with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications, such as lactylation writers and erasers. The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized, revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders. Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信