Bianca S. de C. da Silva;Pedro H. C. de Souza;Luciano L. Mendes
{"title":"基于神经网络的移动通信系统PAPR降低技术","authors":"Bianca S. de C. da Silva;Pedro H. C. de Souza;Luciano L. Mendes","doi":"10.1109/TLA.2025.11045671","DOIUrl":null,"url":null,"abstract":"This work proposes a new solution to reduce the PAPR in OFDM systems using NN. The NN leverages a training dataset generated by the MCSA, which fine-tunes the NN for attaining a similar PAPR reduction of the MCSA. Compared to traditional techniques such as the PTS, the proposed solution offers superior performance by achieving a PAPR reduction of up to 4 dB. Nevertheless, a significant advantage is that the trained NN presents a lower computational complexity compared to the MCSA, without compromising its PAPR reduction capabilities","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 7","pages":"556-564"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045671","citationCount":"0","resultStr":"{\"title\":\"PAPR Reduction Technique for Mobile Communication Systems Using Neural Networks\",\"authors\":\"Bianca S. de C. da Silva;Pedro H. C. de Souza;Luciano L. Mendes\",\"doi\":\"10.1109/TLA.2025.11045671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a new solution to reduce the PAPR in OFDM systems using NN. The NN leverages a training dataset generated by the MCSA, which fine-tunes the NN for attaining a similar PAPR reduction of the MCSA. Compared to traditional techniques such as the PTS, the proposed solution offers superior performance by achieving a PAPR reduction of up to 4 dB. Nevertheless, a significant advantage is that the trained NN presents a lower computational complexity compared to the MCSA, without compromising its PAPR reduction capabilities\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":\"23 7\",\"pages\":\"556-564\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045671\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045671/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11045671/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
PAPR Reduction Technique for Mobile Communication Systems Using Neural Networks
This work proposes a new solution to reduce the PAPR in OFDM systems using NN. The NN leverages a training dataset generated by the MCSA, which fine-tunes the NN for attaining a similar PAPR reduction of the MCSA. Compared to traditional techniques such as the PTS, the proposed solution offers superior performance by achieving a PAPR reduction of up to 4 dB. Nevertheless, a significant advantage is that the trained NN presents a lower computational complexity compared to the MCSA, without compromising its PAPR reduction capabilities
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.