能源储备调度的近似自适应分布鲁棒优化

IF 10 1区 工程技术 Q1 ENERGY & FUELS
Kaiping Qu;Yue Chen;Changhong Zhao
{"title":"能源储备调度的近似自适应分布鲁棒优化","authors":"Kaiping Qu;Yue Chen;Changhong Zhao","doi":"10.1109/TSTE.2025.3532753","DOIUrl":null,"url":null,"abstract":"This paper proposes two novel paradigms of approximately adaptive distributionally robust optimization (AADRO) for the energy and reserve dispatch with wind uncertainty. The piecewise linear policy-based AADRO (PLP-AADRO) approximates the adaptive optimization-based recourse decision as piecewise affine adjustment, while the piecewise value function-based AADRO (PVF-AADRO) approximates the quadratic recourse problem as piecewise linear recourse problems. Moreover, an equal probability principle is developed to achieve a high-quality segmentation of the wind power ambiguity set. Consequently, the distributionally robust quadratic cost constraint can be decomposed into decoupled piecewise constraints, allowing the dispatch problem to be formulated as a less-iterative or even non-iterative program. The two-stage AADROs with polyhedron supported uncertainties are first recast precisely as tractable forms with semidefinite constraints, by employing duality theory and S-lemma. Then, the distributionally robust cost constraint in PVF-AADRO is handled by dual vertex generation, and the bilinear terms in both AADROs are addressed by alternating optimization. Numerical simulations verify the efficiency of AADROs in approximating the strict adaptive distributionally robust optimization, and their adaptability in different cases is discussed.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1762-1775"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximately Adaptive Distributionally Robust Optimization for Energy and Reserve Dispatch\",\"authors\":\"Kaiping Qu;Yue Chen;Changhong Zhao\",\"doi\":\"10.1109/TSTE.2025.3532753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two novel paradigms of approximately adaptive distributionally robust optimization (AADRO) for the energy and reserve dispatch with wind uncertainty. The piecewise linear policy-based AADRO (PLP-AADRO) approximates the adaptive optimization-based recourse decision as piecewise affine adjustment, while the piecewise value function-based AADRO (PVF-AADRO) approximates the quadratic recourse problem as piecewise linear recourse problems. Moreover, an equal probability principle is developed to achieve a high-quality segmentation of the wind power ambiguity set. Consequently, the distributionally robust quadratic cost constraint can be decomposed into decoupled piecewise constraints, allowing the dispatch problem to be formulated as a less-iterative or even non-iterative program. The two-stage AADROs with polyhedron supported uncertainties are first recast precisely as tractable forms with semidefinite constraints, by employing duality theory and S-lemma. Then, the distributionally robust cost constraint in PVF-AADRO is handled by dual vertex generation, and the bilinear terms in both AADROs are addressed by alternating optimization. Numerical simulations verify the efficiency of AADROs in approximating the strict adaptive distributionally robust optimization, and their adaptability in different cases is discussed.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 3\",\"pages\":\"1762-1775\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10849978/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10849978/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

针对风力不确定的能源储备调度问题,提出了两种近似自适应分布鲁棒优化算法。基于分段线性策略的AADRO (PLP-AADRO)将基于自适应优化的追索决策近似为分段仿射调整,而基于分段值函数的AADRO (PVF-AADRO)将二次型追索问题近似为分段线性追索问题。此外,为了实现风电模糊集的高质量分割,提出了等概率原则。因此,可以将分布鲁棒的二次代价约束分解为解耦的分段约束,从而将调度问题表述为一个较少迭代甚至非迭代的方案。首先利用对偶理论和s引理,将具有多面体支持不确定性的两级AADROs精确地转化为具有半定约束的可处理形式。然后,采用双顶点生成的方法处理PVF-AADRO中的分布式鲁棒成本约束,并采用交替优化的方法解决两种aadro中的双线性项。数值仿真验证了AADROs在逼近严格自适应分布鲁棒优化方面的有效性,并讨论了其在不同情况下的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximately Adaptive Distributionally Robust Optimization for Energy and Reserve Dispatch
This paper proposes two novel paradigms of approximately adaptive distributionally robust optimization (AADRO) for the energy and reserve dispatch with wind uncertainty. The piecewise linear policy-based AADRO (PLP-AADRO) approximates the adaptive optimization-based recourse decision as piecewise affine adjustment, while the piecewise value function-based AADRO (PVF-AADRO) approximates the quadratic recourse problem as piecewise linear recourse problems. Moreover, an equal probability principle is developed to achieve a high-quality segmentation of the wind power ambiguity set. Consequently, the distributionally robust quadratic cost constraint can be decomposed into decoupled piecewise constraints, allowing the dispatch problem to be formulated as a less-iterative or even non-iterative program. The two-stage AADROs with polyhedron supported uncertainties are first recast precisely as tractable forms with semidefinite constraints, by employing duality theory and S-lemma. Then, the distributionally robust cost constraint in PVF-AADRO is handled by dual vertex generation, and the bilinear terms in both AADROs are addressed by alternating optimization. Numerical simulations verify the efficiency of AADROs in approximating the strict adaptive distributionally robust optimization, and their adaptability in different cases is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信