Huaiyuan Zhang;Kai Liao;Jianwei Yang;Zhe Yin;Zhengyou He
{"title":"基于深度强化学习的风-电-水-蓄混合能源系统长期与短期协调调度","authors":"Huaiyuan Zhang;Kai Liao;Jianwei Yang;Zhe Yin;Zhengyou He","doi":"10.1109/TSTE.2025.3529215","DOIUrl":null,"url":null,"abstract":"For wind-photovoltaic-hydro-storage hybrid energy systems (WPHS-HES) grappling with the complexities of multiple scheduling cycles, traditional long-term strategies often impair short-term regulation capabilities, leading to extensive resource waste and critical power shortages. Thus, this paper introduces a novel framework that intricately nests short-term operational characteristics within long-term operating rules to synchronize multi-timescale scheduling for WPHS-HES. The cornerstone of our approach is the novel formulation of the long-term scheduling as a Markov Decision Process (MDP). It is integrated seamlessly with short-term generation schedules developed through an optimal model embedded at each MDP step. To achieve computational effectiveness and reliability, we propose a hybrid data-model-driven solution that harnesses the synergistic benefits of both data-driven and model-driven methodologies. By leveraging deep reinforcement learning our approach significantly streamlines long-term decision variables, while ensuring strict adherence to short-term operational constraints through mixed integer linear programming. Empirical simulations on an operational WPHS-HES validate the superior efficacy of our method over traditional scenario reduction and robust optimization techniques. The results are striking that it achieves a reduction in sustainable energy curtailment from 11.67% to 0.63% and slashes the load shedding rate from 3.3% to 0.69%, thereby setting a new benchmark for intelligent energy management in complex hybrid systems.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1697-1710"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term and Short-Term Coordinated Scheduling for Wind-PV-Hydro-Storage Hybrid Energy System Based on Deep Reinforcement Learning\",\"authors\":\"Huaiyuan Zhang;Kai Liao;Jianwei Yang;Zhe Yin;Zhengyou He\",\"doi\":\"10.1109/TSTE.2025.3529215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For wind-photovoltaic-hydro-storage hybrid energy systems (WPHS-HES) grappling with the complexities of multiple scheduling cycles, traditional long-term strategies often impair short-term regulation capabilities, leading to extensive resource waste and critical power shortages. Thus, this paper introduces a novel framework that intricately nests short-term operational characteristics within long-term operating rules to synchronize multi-timescale scheduling for WPHS-HES. The cornerstone of our approach is the novel formulation of the long-term scheduling as a Markov Decision Process (MDP). It is integrated seamlessly with short-term generation schedules developed through an optimal model embedded at each MDP step. To achieve computational effectiveness and reliability, we propose a hybrid data-model-driven solution that harnesses the synergistic benefits of both data-driven and model-driven methodologies. By leveraging deep reinforcement learning our approach significantly streamlines long-term decision variables, while ensuring strict adherence to short-term operational constraints through mixed integer linear programming. Empirical simulations on an operational WPHS-HES validate the superior efficacy of our method over traditional scenario reduction and robust optimization techniques. The results are striking that it achieves a reduction in sustainable energy curtailment from 11.67% to 0.63% and slashes the load shedding rate from 3.3% to 0.69%, thereby setting a new benchmark for intelligent energy management in complex hybrid systems.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 3\",\"pages\":\"1697-1710\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839633/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839633/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Long-Term and Short-Term Coordinated Scheduling for Wind-PV-Hydro-Storage Hybrid Energy System Based on Deep Reinforcement Learning
For wind-photovoltaic-hydro-storage hybrid energy systems (WPHS-HES) grappling with the complexities of multiple scheduling cycles, traditional long-term strategies often impair short-term regulation capabilities, leading to extensive resource waste and critical power shortages. Thus, this paper introduces a novel framework that intricately nests short-term operational characteristics within long-term operating rules to synchronize multi-timescale scheduling for WPHS-HES. The cornerstone of our approach is the novel formulation of the long-term scheduling as a Markov Decision Process (MDP). It is integrated seamlessly with short-term generation schedules developed through an optimal model embedded at each MDP step. To achieve computational effectiveness and reliability, we propose a hybrid data-model-driven solution that harnesses the synergistic benefits of both data-driven and model-driven methodologies. By leveraging deep reinforcement learning our approach significantly streamlines long-term decision variables, while ensuring strict adherence to short-term operational constraints through mixed integer linear programming. Empirical simulations on an operational WPHS-HES validate the superior efficacy of our method over traditional scenario reduction and robust optimization techniques. The results are striking that it achieves a reduction in sustainable energy curtailment from 11.67% to 0.63% and slashes the load shedding rate from 3.3% to 0.69%, thereby setting a new benchmark for intelligent energy management in complex hybrid systems.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.