电网频率支持下全功率变流器变速抽水蓄能系统的惯性传递控制

IF 10 1区 工程技术 Q1 ENERGY & FUELS
Kaihsun Chuang;Xiongfei Tao;Yihang Luan;Minxuan Peng;Jianjun Sun;Xiaoming Zha
{"title":"电网频率支持下全功率变流器变速抽水蓄能系统的惯性传递控制","authors":"Kaihsun Chuang;Xiongfei Tao;Yihang Luan;Minxuan Peng;Jianjun Sun;Xiaoming Zha","doi":"10.1109/TSTE.2025.3533493","DOIUrl":null,"url":null,"abstract":"Full-power converter variable-speed pumped storage (FPC-VSPS) is a promising technique for flexible power regulation in small-scale distributed hydroelectric power plants. However, conventional vector control limits the synchronous motor of the FPC-VSPS from providing inertia support to the power grid. To overcome this limitation, this paper introduces an inertia transmission control for FPC-VSPS based on the concept of DC voltage synchronization. Firstly, the control incorporates the DC capacitor power equation into the GSC control. To enable inertia transmission from the FPC-VSPS synchronous machine, the DC capacitor dynamics are fed into both the speed and torque control of the MSC. Secondly, a torsion spring-rigid body equivalent model is introduced based on the inertia transmission process, analyzing the effects of physical parameters, control coefficients, and transmission delays on the inertia transmission performance. Theoretical analysis and simulation results reveal that the inherent physical differences and transmission delay have a negative impact on the effectiveness of the inertia transmission. Consequently, a DC capacitor design method based on inertia matching is proposed, accounting for the constraints of physical inertia matching, system stability, and operational security. Finally, simulations and experiments prove the necessity of inertia matching and verify the effectiveness of the proposed control to cope with frequency fluctuations in both pumping and generating modes.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1776-1790"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertia Transmission Control of Full-Power Converter Variable-Speed Pumped Storage System for Grid Frequency Support\",\"authors\":\"Kaihsun Chuang;Xiongfei Tao;Yihang Luan;Minxuan Peng;Jianjun Sun;Xiaoming Zha\",\"doi\":\"10.1109/TSTE.2025.3533493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full-power converter variable-speed pumped storage (FPC-VSPS) is a promising technique for flexible power regulation in small-scale distributed hydroelectric power plants. However, conventional vector control limits the synchronous motor of the FPC-VSPS from providing inertia support to the power grid. To overcome this limitation, this paper introduces an inertia transmission control for FPC-VSPS based on the concept of DC voltage synchronization. Firstly, the control incorporates the DC capacitor power equation into the GSC control. To enable inertia transmission from the FPC-VSPS synchronous machine, the DC capacitor dynamics are fed into both the speed and torque control of the MSC. Secondly, a torsion spring-rigid body equivalent model is introduced based on the inertia transmission process, analyzing the effects of physical parameters, control coefficients, and transmission delays on the inertia transmission performance. Theoretical analysis and simulation results reveal that the inherent physical differences and transmission delay have a negative impact on the effectiveness of the inertia transmission. Consequently, a DC capacitor design method based on inertia matching is proposed, accounting for the constraints of physical inertia matching, system stability, and operational security. Finally, simulations and experiments prove the necessity of inertia matching and verify the effectiveness of the proposed control to cope with frequency fluctuations in both pumping and generating modes.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 3\",\"pages\":\"1776-1790\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852016/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852016/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

全功率变换器调速抽水蓄能是一种很有前途的小型分布式水电站柔性电力调节技术。然而,传统的矢量控制限制了FPC-VSPS同步电机向电网提供惯性支持的能力。为了克服这一限制,本文引入了一种基于直流电压同步概念的FPC-VSPS惯性传输控制。首先,将直流电容功率方程引入到GSC控制中。为了实现FPC-VSPS同步电机的惯性传输,直流电容的动态特性被输入到MSC的速度和转矩控制中。其次,建立了基于惯性传递过程的扭转弹簧-刚体等效模型,分析了物理参数、控制系数和传递延时对惯性传递性能的影响;理论分析和仿真结果表明,固有的物理差异和传输延迟对惯性传输的有效性有负面影响。在此基础上,提出了一种考虑物理惯性匹配、系统稳定性和运行安全性约束的基于惯性匹配的直流电容设计方法。最后,仿真和实验证明了惯性匹配的必要性,并验证了所提出的控制方法在泵送模式和发电模式下应对频率波动的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertia Transmission Control of Full-Power Converter Variable-Speed Pumped Storage System for Grid Frequency Support
Full-power converter variable-speed pumped storage (FPC-VSPS) is a promising technique for flexible power regulation in small-scale distributed hydroelectric power plants. However, conventional vector control limits the synchronous motor of the FPC-VSPS from providing inertia support to the power grid. To overcome this limitation, this paper introduces an inertia transmission control for FPC-VSPS based on the concept of DC voltage synchronization. Firstly, the control incorporates the DC capacitor power equation into the GSC control. To enable inertia transmission from the FPC-VSPS synchronous machine, the DC capacitor dynamics are fed into both the speed and torque control of the MSC. Secondly, a torsion spring-rigid body equivalent model is introduced based on the inertia transmission process, analyzing the effects of physical parameters, control coefficients, and transmission delays on the inertia transmission performance. Theoretical analysis and simulation results reveal that the inherent physical differences and transmission delay have a negative impact on the effectiveness of the inertia transmission. Consequently, a DC capacitor design method based on inertia matching is proposed, accounting for the constraints of physical inertia matching, system stability, and operational security. Finally, simulations and experiments prove the necessity of inertia matching and verify the effectiveness of the proposed control to cope with frequency fluctuations in both pumping and generating modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信