{"title":"在各种调度方案和电网强度下提高随网变流器稳定性的VSG BESS优化尺寸","authors":"Yunda Xu;Ruifeng Yan;Tapan Kumar Saha","doi":"10.1109/TSTE.2025.3546294","DOIUrl":null,"url":null,"abstract":"As renewable energy integration increases, ensuring stability of Inverter-Based Resources (IBRs) in weak grids is crucial, as grid-following (GFL) converters often become unstable under such conditions. Integrating virtual synchronous generator (VSG) batteries has shown potential to improve GFL stability, but determining the optimal size of the VSG required for stability remains an open question. Existing research typically relies on small-signal or impedance models for stability analysis, which are only valid at a single operating point and do not consider the full range of operating conditions, including various dispatch scenarios and grid strengths. This paper addresses this gap by proposing a novel methodology to visualize the system's stable operating region, offering insights into stability boundaries across various real power and grid impedance variations. Additionally, it introduces an optimal VSG battery sizing strategy that accounts for these variations, ensuring stability while minimizing VSG capacity. The strategy's effectiveness is validated through comprehensive PSCAD simulations, demonstrating its reliability across a wide range of real power and grid impedance operating points.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"2210-2223"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal VSG BESS Sizing for Improving Grid-Following Converter Stability Under Various Dispatch Scenarios and Grid Strengths\",\"authors\":\"Yunda Xu;Ruifeng Yan;Tapan Kumar Saha\",\"doi\":\"10.1109/TSTE.2025.3546294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As renewable energy integration increases, ensuring stability of Inverter-Based Resources (IBRs) in weak grids is crucial, as grid-following (GFL) converters often become unstable under such conditions. Integrating virtual synchronous generator (VSG) batteries has shown potential to improve GFL stability, but determining the optimal size of the VSG required for stability remains an open question. Existing research typically relies on small-signal or impedance models for stability analysis, which are only valid at a single operating point and do not consider the full range of operating conditions, including various dispatch scenarios and grid strengths. This paper addresses this gap by proposing a novel methodology to visualize the system's stable operating region, offering insights into stability boundaries across various real power and grid impedance variations. Additionally, it introduces an optimal VSG battery sizing strategy that accounts for these variations, ensuring stability while minimizing VSG capacity. The strategy's effectiveness is validated through comprehensive PSCAD simulations, demonstrating its reliability across a wide range of real power and grid impedance operating points.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 3\",\"pages\":\"2210-2223\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924310/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10924310/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimal VSG BESS Sizing for Improving Grid-Following Converter Stability Under Various Dispatch Scenarios and Grid Strengths
As renewable energy integration increases, ensuring stability of Inverter-Based Resources (IBRs) in weak grids is crucial, as grid-following (GFL) converters often become unstable under such conditions. Integrating virtual synchronous generator (VSG) batteries has shown potential to improve GFL stability, but determining the optimal size of the VSG required for stability remains an open question. Existing research typically relies on small-signal or impedance models for stability analysis, which are only valid at a single operating point and do not consider the full range of operating conditions, including various dispatch scenarios and grid strengths. This paper addresses this gap by proposing a novel methodology to visualize the system's stable operating region, offering insights into stability boundaries across various real power and grid impedance variations. Additionally, it introduces an optimal VSG battery sizing strategy that accounts for these variations, ensuring stability while minimizing VSG capacity. The strategy's effectiveness is validated through comprehensive PSCAD simulations, demonstrating its reliability across a wide range of real power and grid impedance operating points.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.