多光谱泛锐化的渐进式特征交互视觉状态空间网络

Guoxia Xu;Zhenwei Xu;Lizhen Deng;Hu Zhu
{"title":"多光谱泛锐化的渐进式特征交互视觉状态空间网络","authors":"Guoxia Xu;Zhenwei Xu;Lizhen Deng;Hu Zhu","doi":"10.1109/LGRS.2025.3576291","DOIUrl":null,"url":null,"abstract":"Pansharpening involves extracting spectral information from multispectral images (MSs) and structural details from panchromatic images (PAN), then fusing them to produce high-resolution multispectral (HRMS) remote sensing images. However, high-resolution MSs often suffer from spectral or structural information loss. In this letter, we introduce a pansharpening algorithm based on a progressive feature interaction visual state-space network. It enables interaction between local and global features of multispectral and PAN and facilitates the injection of spectral and spatial details through distinct attention modules. This approach effectively preserves both spectral characteristics and spatial structure through interbranch information interaction and complementation. Additionally, by integrating a visual state-space network, the proposed model achieves deep reconstruction of multiscale global information, enhancing robustness and generalization. Extensive experimental results demonstrate that the proposed network achieves highly competitive performance in both visual assessments and objective metric evaluations.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PVSSNet: Progressive Feature Interaction Visual State-Space Network for Multispectral Pansharpening\",\"authors\":\"Guoxia Xu;Zhenwei Xu;Lizhen Deng;Hu Zhu\",\"doi\":\"10.1109/LGRS.2025.3576291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pansharpening involves extracting spectral information from multispectral images (MSs) and structural details from panchromatic images (PAN), then fusing them to produce high-resolution multispectral (HRMS) remote sensing images. However, high-resolution MSs often suffer from spectral or structural information loss. In this letter, we introduce a pansharpening algorithm based on a progressive feature interaction visual state-space network. It enables interaction between local and global features of multispectral and PAN and facilitates the injection of spectral and spatial details through distinct attention modules. This approach effectively preserves both spectral characteristics and spatial structure through interbranch information interaction and complementation. Additionally, by integrating a visual state-space network, the proposed model achieves deep reconstruction of multiscale global information, enhancing robustness and generalization. Extensive experimental results demonstrate that the proposed network achieves highly competitive performance in both visual assessments and objective metric evaluations.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11021658/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11021658/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Pansharpening是指从多光谱图像(MSs)中提取光谱信息,从全色图像(PAN)中提取结构细节,然后融合成高分辨率多光谱遥感图像(HRMS)。然而,高分辨率的MSs经常遭受光谱或结构信息的损失。本文介绍了一种基于渐进式特征交互视觉状态空间网络的泛锐化算法。它使多光谱与PAN的局部特征与全局特征相互作用,通过不同的关注模块,方便了光谱和空间细节的注入。该方法通过分支间信息的交互和互补,有效地保留了光谱特征和空间结构。此外,通过集成视觉状态空间网络,该模型实现了多尺度全局信息的深度重构,增强了鲁棒性和泛化能力。大量的实验结果表明,所提出的网络在视觉评价和客观度量评价方面都具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PVSSNet: Progressive Feature Interaction Visual State-Space Network for Multispectral Pansharpening
Pansharpening involves extracting spectral information from multispectral images (MSs) and structural details from panchromatic images (PAN), then fusing them to produce high-resolution multispectral (HRMS) remote sensing images. However, high-resolution MSs often suffer from spectral or structural information loss. In this letter, we introduce a pansharpening algorithm based on a progressive feature interaction visual state-space network. It enables interaction between local and global features of multispectral and PAN and facilitates the injection of spectral and spatial details through distinct attention modules. This approach effectively preserves both spectral characteristics and spatial structure through interbranch information interaction and complementation. Additionally, by integrating a visual state-space network, the proposed model achieves deep reconstruction of multiscale global information, enhancing robustness and generalization. Extensive experimental results demonstrate that the proposed network achieves highly competitive performance in both visual assessments and objective metric evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信