CHGAFF-YOLO:用于海洋内波实时检测的级联混合全局自适应特征融合框架

Xianwei Huo;He Gao;Baoxiang Huang;Ge Chen
{"title":"CHGAFF-YOLO:用于海洋内波实时检测的级联混合全局自适应特征融合框架","authors":"Xianwei Huo;He Gao;Baoxiang Huang;Ge Chen","doi":"10.1109/LGRS.2025.3577597","DOIUrl":null,"url":null,"abstract":"Internal waves (IWs) are widely present in the global ocean and play a crucial role in ocean dynamics, material transport, and climate change research. However, due to the large-scale variations and complex morphological features of IW objects, existing detection methods have limitations in cross-scale feature extraction and information fusion. To address the aforementioned issues, this letter proposes a cascade hybrid global adaptive feature fusion you only look once (CHGAFF-YOLO) model for ocean IW detection. First, we employ the HGNetV2 structure as the backbone network of YOLO to better capture global information and extract complex features in a lightweight manner. Second, we introduce a Cascade Hybrid Cross-head Attention Module (CHCAM), which integrates in-group cascade attention with cross-head parallel self-attention mechanisms to achieve optimized multiscale feature extraction and enhance global feature representation capability. Finally, we design a Four-Head Adaptive Feature Fusion Module (FHAFF), which dynamically fuses feature information from different scales by constructing four detection heads, further enhancing cross-scale information interaction. Extensive experimental results show that our method significantly outperforms existing approaches on both the Sentinel-1 synthetic aperture radar (SAR) and MODIS satellite IW remote sensing datasets.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHGAFF-YOLO: A Cascade Hybrid Global Adaptive Feature Fusion Framework for Real-Time Ocean Internal Wave Detection\",\"authors\":\"Xianwei Huo;He Gao;Baoxiang Huang;Ge Chen\",\"doi\":\"10.1109/LGRS.2025.3577597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal waves (IWs) are widely present in the global ocean and play a crucial role in ocean dynamics, material transport, and climate change research. However, due to the large-scale variations and complex morphological features of IW objects, existing detection methods have limitations in cross-scale feature extraction and information fusion. To address the aforementioned issues, this letter proposes a cascade hybrid global adaptive feature fusion you only look once (CHGAFF-YOLO) model for ocean IW detection. First, we employ the HGNetV2 structure as the backbone network of YOLO to better capture global information and extract complex features in a lightweight manner. Second, we introduce a Cascade Hybrid Cross-head Attention Module (CHCAM), which integrates in-group cascade attention with cross-head parallel self-attention mechanisms to achieve optimized multiscale feature extraction and enhance global feature representation capability. Finally, we design a Four-Head Adaptive Feature Fusion Module (FHAFF), which dynamically fuses feature information from different scales by constructing four detection heads, further enhancing cross-scale information interaction. Extensive experimental results show that our method significantly outperforms existing approaches on both the Sentinel-1 synthetic aperture radar (SAR) and MODIS satellite IW remote sensing datasets.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11028055/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11028055/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内波在全球海洋中广泛存在,在海洋动力学、物质运输和气候变化研究中起着至关重要的作用。然而,由于IW目标的大规模变化和复杂的形态特征,现有的检测方法在跨尺度特征提取和信息融合方面存在局限性。为了解决上述问题,本文提出了一种用于海洋IW检测的级联混合全局自适应特征融合(CHGAFF-YOLO)模型。首先,我们采用HGNetV2结构作为YOLO的骨干网,以轻量级的方式更好地捕获全局信息和提取复杂特征。其次,我们引入了级联混合交叉头注意模块(CHCAM),该模块将群体内级联注意与交叉头并行自注意机制相结合,实现了优化的多尺度特征提取,增强了全局特征表示能力。最后,设计了一个四头自适应特征融合模块(FHAFF),通过构建四个检测头来动态融合不同尺度的特征信息,进一步增强了跨尺度的信息交互。大量的实验结果表明,我们的方法在Sentinel-1合成孔径雷达(SAR)和MODIS卫星IW遥感数据集上都明显优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHGAFF-YOLO: A Cascade Hybrid Global Adaptive Feature Fusion Framework for Real-Time Ocean Internal Wave Detection
Internal waves (IWs) are widely present in the global ocean and play a crucial role in ocean dynamics, material transport, and climate change research. However, due to the large-scale variations and complex morphological features of IW objects, existing detection methods have limitations in cross-scale feature extraction and information fusion. To address the aforementioned issues, this letter proposes a cascade hybrid global adaptive feature fusion you only look once (CHGAFF-YOLO) model for ocean IW detection. First, we employ the HGNetV2 structure as the backbone network of YOLO to better capture global information and extract complex features in a lightweight manner. Second, we introduce a Cascade Hybrid Cross-head Attention Module (CHCAM), which integrates in-group cascade attention with cross-head parallel self-attention mechanisms to achieve optimized multiscale feature extraction and enhance global feature representation capability. Finally, we design a Four-Head Adaptive Feature Fusion Module (FHAFF), which dynamically fuses feature information from different scales by constructing four detection heads, further enhancing cross-scale information interaction. Extensive experimental results show that our method significantly outperforms existing approaches on both the Sentinel-1 synthetic aperture radar (SAR) and MODIS satellite IW remote sensing datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信