实时毫米波能量收集系统中aoi感知传输控制:一种风险敏感强化学习方法

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Marzieh Sheikhi , Vesal Hakami
{"title":"实时毫米波能量收集系统中aoi感知传输控制:一种风险敏感强化学习方法","authors":"Marzieh Sheikhi ,&nbsp;Vesal Hakami","doi":"10.1016/j.dcan.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of enabling technologies in wireless communications has paved the way for supporting novel applications with more demanding QoS requirements, but at the cost of increasing the complexity of optimizing the digital communication chain. In particular, Millimeter Wave (mmWave) communications provide an abundance of bandwidth, and energy harvesting supplies the network with a continual source of energy to facilitate self-sustainability; however, harnessing these technologies is challenging due to the stochastic dynamics of the mmWave channel as well as the random sporadic nature of the harvested energy. In this paper, we aim at the dynamic optimization of update transmissions in mmWave energy harvesting systems in terms of Age of Information (AoI). AoI has recently been introduced to quantify information freshness and is a more stringent QoS metric compared to conventional delay and throughput. However, most prior art has only addressed average-based AoI metrics, which can be insufficient to capture the occurrence of rare but high-impact freshness violation events in time-critical scenarios. We formulate a control problem that aims to minimize the long-term entropic risk measure of AoI samples by configuring the “sense &amp; transmit” of updates. Due to the high complexity of the exponential cost function, we reformulate the problem with an approximated mean-variance risk measure as the new objective. Under unknown system statistics, we propose a two-timescale model-free risk-sensitive reinforcement learning algorithm to compute a control policy that adapts to the trio of channel, energy, and AoI states. We evaluate the efficiency of the proposed scheme through extensive simulations.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 3","pages":"Pages 850-865"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AoI-aware transmission control in real-time mmwave energy harvesting systems: a risk-sensitive reinforcement learning approach\",\"authors\":\"Marzieh Sheikhi ,&nbsp;Vesal Hakami\",\"doi\":\"10.1016/j.dcan.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The evolution of enabling technologies in wireless communications has paved the way for supporting novel applications with more demanding QoS requirements, but at the cost of increasing the complexity of optimizing the digital communication chain. In particular, Millimeter Wave (mmWave) communications provide an abundance of bandwidth, and energy harvesting supplies the network with a continual source of energy to facilitate self-sustainability; however, harnessing these technologies is challenging due to the stochastic dynamics of the mmWave channel as well as the random sporadic nature of the harvested energy. In this paper, we aim at the dynamic optimization of update transmissions in mmWave energy harvesting systems in terms of Age of Information (AoI). AoI has recently been introduced to quantify information freshness and is a more stringent QoS metric compared to conventional delay and throughput. However, most prior art has only addressed average-based AoI metrics, which can be insufficient to capture the occurrence of rare but high-impact freshness violation events in time-critical scenarios. We formulate a control problem that aims to minimize the long-term entropic risk measure of AoI samples by configuring the “sense &amp; transmit” of updates. Due to the high complexity of the exponential cost function, we reformulate the problem with an approximated mean-variance risk measure as the new objective. Under unknown system statistics, we propose a two-timescale model-free risk-sensitive reinforcement learning algorithm to compute a control policy that adapts to the trio of channel, energy, and AoI states. We evaluate the efficiency of the proposed scheme through extensive simulations.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 3\",\"pages\":\"Pages 850-865\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235286482400107X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235286482400107X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

无线通信中使能技术的发展为支持具有更高QoS要求的新应用铺平了道路,但代价是增加了优化数字通信链的复杂性。特别是毫米波(mmWave)通信提供了丰富的带宽,能量收集为网络提供了持续的能量来源,以促进自我可持续发展;然而,由于毫米波信道的随机动力学以及所收集能量的随机散发性质,利用这些技术具有挑战性。本文针对信息时代下毫米波能量收集系统中更新传输的动态优化问题进行了研究。最近引入了AoI来量化信息新鲜度,与传统的延迟和吞吐量相比,它是一种更严格的QoS度量。然而,大多数现有技术只处理基于平均的AoI指标,这可能不足以捕获在时间关键场景中罕见但影响很大的新鲜度违规事件的发生。我们通过配置“sense &;发送”的更新。由于指数成本函数的高复杂性,我们用一个近似的均值方差风险度量作为新的目标来重新表述问题。在未知系统统计量下,我们提出了一种双时间尺度无模型风险敏感强化学习算法来计算适应通道、能量和AoI状态的控制策略。我们通过大量的模拟来评估所提出方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AoI-aware transmission control in real-time mmwave energy harvesting systems: a risk-sensitive reinforcement learning approach
The evolution of enabling technologies in wireless communications has paved the way for supporting novel applications with more demanding QoS requirements, but at the cost of increasing the complexity of optimizing the digital communication chain. In particular, Millimeter Wave (mmWave) communications provide an abundance of bandwidth, and energy harvesting supplies the network with a continual source of energy to facilitate self-sustainability; however, harnessing these technologies is challenging due to the stochastic dynamics of the mmWave channel as well as the random sporadic nature of the harvested energy. In this paper, we aim at the dynamic optimization of update transmissions in mmWave energy harvesting systems in terms of Age of Information (AoI). AoI has recently been introduced to quantify information freshness and is a more stringent QoS metric compared to conventional delay and throughput. However, most prior art has only addressed average-based AoI metrics, which can be insufficient to capture the occurrence of rare but high-impact freshness violation events in time-critical scenarios. We formulate a control problem that aims to minimize the long-term entropic risk measure of AoI samples by configuring the “sense & transmit” of updates. Due to the high complexity of the exponential cost function, we reformulate the problem with an approximated mean-variance risk measure as the new objective. Under unknown system statistics, we propose a two-timescale model-free risk-sensitive reinforcement learning algorithm to compute a control policy that adapts to the trio of channel, energy, and AoI states. We evaluate the efficiency of the proposed scheme through extensive simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信