{"title":"实时毫米波能量收集系统中aoi感知传输控制:一种风险敏感强化学习方法","authors":"Marzieh Sheikhi , Vesal Hakami","doi":"10.1016/j.dcan.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of enabling technologies in wireless communications has paved the way for supporting novel applications with more demanding QoS requirements, but at the cost of increasing the complexity of optimizing the digital communication chain. In particular, Millimeter Wave (mmWave) communications provide an abundance of bandwidth, and energy harvesting supplies the network with a continual source of energy to facilitate self-sustainability; however, harnessing these technologies is challenging due to the stochastic dynamics of the mmWave channel as well as the random sporadic nature of the harvested energy. In this paper, we aim at the dynamic optimization of update transmissions in mmWave energy harvesting systems in terms of Age of Information (AoI). AoI has recently been introduced to quantify information freshness and is a more stringent QoS metric compared to conventional delay and throughput. However, most prior art has only addressed average-based AoI metrics, which can be insufficient to capture the occurrence of rare but high-impact freshness violation events in time-critical scenarios. We formulate a control problem that aims to minimize the long-term entropic risk measure of AoI samples by configuring the “sense & transmit” of updates. Due to the high complexity of the exponential cost function, we reformulate the problem with an approximated mean-variance risk measure as the new objective. Under unknown system statistics, we propose a two-timescale model-free risk-sensitive reinforcement learning algorithm to compute a control policy that adapts to the trio of channel, energy, and AoI states. We evaluate the efficiency of the proposed scheme through extensive simulations.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 3","pages":"Pages 850-865"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AoI-aware transmission control in real-time mmwave energy harvesting systems: a risk-sensitive reinforcement learning approach\",\"authors\":\"Marzieh Sheikhi , Vesal Hakami\",\"doi\":\"10.1016/j.dcan.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The evolution of enabling technologies in wireless communications has paved the way for supporting novel applications with more demanding QoS requirements, but at the cost of increasing the complexity of optimizing the digital communication chain. In particular, Millimeter Wave (mmWave) communications provide an abundance of bandwidth, and energy harvesting supplies the network with a continual source of energy to facilitate self-sustainability; however, harnessing these technologies is challenging due to the stochastic dynamics of the mmWave channel as well as the random sporadic nature of the harvested energy. In this paper, we aim at the dynamic optimization of update transmissions in mmWave energy harvesting systems in terms of Age of Information (AoI). AoI has recently been introduced to quantify information freshness and is a more stringent QoS metric compared to conventional delay and throughput. However, most prior art has only addressed average-based AoI metrics, which can be insufficient to capture the occurrence of rare but high-impact freshness violation events in time-critical scenarios. We formulate a control problem that aims to minimize the long-term entropic risk measure of AoI samples by configuring the “sense & transmit” of updates. Due to the high complexity of the exponential cost function, we reformulate the problem with an approximated mean-variance risk measure as the new objective. Under unknown system statistics, we propose a two-timescale model-free risk-sensitive reinforcement learning algorithm to compute a control policy that adapts to the trio of channel, energy, and AoI states. We evaluate the efficiency of the proposed scheme through extensive simulations.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 3\",\"pages\":\"Pages 850-865\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235286482400107X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235286482400107X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
AoI-aware transmission control in real-time mmwave energy harvesting systems: a risk-sensitive reinforcement learning approach
The evolution of enabling technologies in wireless communications has paved the way for supporting novel applications with more demanding QoS requirements, but at the cost of increasing the complexity of optimizing the digital communication chain. In particular, Millimeter Wave (mmWave) communications provide an abundance of bandwidth, and energy harvesting supplies the network with a continual source of energy to facilitate self-sustainability; however, harnessing these technologies is challenging due to the stochastic dynamics of the mmWave channel as well as the random sporadic nature of the harvested energy. In this paper, we aim at the dynamic optimization of update transmissions in mmWave energy harvesting systems in terms of Age of Information (AoI). AoI has recently been introduced to quantify information freshness and is a more stringent QoS metric compared to conventional delay and throughput. However, most prior art has only addressed average-based AoI metrics, which can be insufficient to capture the occurrence of rare but high-impact freshness violation events in time-critical scenarios. We formulate a control problem that aims to minimize the long-term entropic risk measure of AoI samples by configuring the “sense & transmit” of updates. Due to the high complexity of the exponential cost function, we reformulate the problem with an approximated mean-variance risk measure as the new objective. Under unknown system statistics, we propose a two-timescale model-free risk-sensitive reinforcement learning algorithm to compute a control policy that adapts to the trio of channel, energy, and AoI states. We evaluate the efficiency of the proposed scheme through extensive simulations.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.