解译硫代霉素生物合成中的硫代内酯化机制

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Guo, Qiaoyu Zhang, Yang Shen, Fangyuan Cheng, Moli Sang, Xuan Wang, Yunjun Pan, Mingyu Liu, Hao-Bing Yu, Bo Hu, Sheng Wang, Liangzhen Zheng, Ce Geng, Chaofan Yang, Lianzhong Luo, Gang Zhang, Lei Du, Yuanning Li, Wei Zhang, Yandong Zhang*, Binju Wang*, Shengying Li* and Xingwang Zhang*, 
{"title":"解译硫代霉素生物合成中的硫代内酯化机制","authors":"Jiawei Guo,&nbsp;Qiaoyu Zhang,&nbsp;Yang Shen,&nbsp;Fangyuan Cheng,&nbsp;Moli Sang,&nbsp;Xuan Wang,&nbsp;Yunjun Pan,&nbsp;Mingyu Liu,&nbsp;Hao-Bing Yu,&nbsp;Bo Hu,&nbsp;Sheng Wang,&nbsp;Liangzhen Zheng,&nbsp;Ce Geng,&nbsp;Chaofan Yang,&nbsp;Lianzhong Luo,&nbsp;Gang Zhang,&nbsp;Lei Du,&nbsp;Yuanning Li,&nbsp;Wei Zhang,&nbsp;Yandong Zhang*,&nbsp;Binju Wang*,&nbsp;Shengying Li* and Xingwang Zhang*,&nbsp;","doi":"10.1021/jacs.4c14296","DOIUrl":null,"url":null,"abstract":"<p >Thiolactomycin (<b>1</b>), which features a unique γ-thiolactone ring, is a promising antibiotic candidate that specifically targets bacterial type II fatty acid synthase. Despite extensive studies on its pharmacological activities, modes of action, and chemical synthesis, the enzymatic processes responsible for forming the activity-determining γ-thiolactone ring have remained largely unknown. Here, we resolve this problem by revealing that the condensation and heterocyclization (Cy) domain of the nonribosomal peptide synthetase (NRPS) TlnC (TlnC<sub>Cy</sub>), along with the cytochrome P450 enzyme TlnA, cooperatively enable the γ-thiolactone assembly. TlnC<sub>Cy</sub> mediates an unusual sulfurtransfer reaction to sulfurate the polyketide intermediate, generating a thiocarboxylate intermediate. Subsequently, TlnA acts as a γ-thiolactone synthase, converting the linear thiocarboxylate intermediate into <b>1</b> via a distal radical-based cyclization mechanism. These findings not only expand the functional and catalytic repertoires of NRPS Cy domains and P450 enzymes but also highlight a special enzymatic strategy for γ-thiolactone biosynthesis in nature.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 26","pages":"22368–22386"},"PeriodicalIF":15.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Thiolactonization Mechanism in Thiolactomycin Biosynthesis\",\"authors\":\"Jiawei Guo,&nbsp;Qiaoyu Zhang,&nbsp;Yang Shen,&nbsp;Fangyuan Cheng,&nbsp;Moli Sang,&nbsp;Xuan Wang,&nbsp;Yunjun Pan,&nbsp;Mingyu Liu,&nbsp;Hao-Bing Yu,&nbsp;Bo Hu,&nbsp;Sheng Wang,&nbsp;Liangzhen Zheng,&nbsp;Ce Geng,&nbsp;Chaofan Yang,&nbsp;Lianzhong Luo,&nbsp;Gang Zhang,&nbsp;Lei Du,&nbsp;Yuanning Li,&nbsp;Wei Zhang,&nbsp;Yandong Zhang*,&nbsp;Binju Wang*,&nbsp;Shengying Li* and Xingwang Zhang*,&nbsp;\",\"doi\":\"10.1021/jacs.4c14296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Thiolactomycin (<b>1</b>), which features a unique γ-thiolactone ring, is a promising antibiotic candidate that specifically targets bacterial type II fatty acid synthase. Despite extensive studies on its pharmacological activities, modes of action, and chemical synthesis, the enzymatic processes responsible for forming the activity-determining γ-thiolactone ring have remained largely unknown. Here, we resolve this problem by revealing that the condensation and heterocyclization (Cy) domain of the nonribosomal peptide synthetase (NRPS) TlnC (TlnC<sub>Cy</sub>), along with the cytochrome P450 enzyme TlnA, cooperatively enable the γ-thiolactone assembly. TlnC<sub>Cy</sub> mediates an unusual sulfurtransfer reaction to sulfurate the polyketide intermediate, generating a thiocarboxylate intermediate. Subsequently, TlnA acts as a γ-thiolactone synthase, converting the linear thiocarboxylate intermediate into <b>1</b> via a distal radical-based cyclization mechanism. These findings not only expand the functional and catalytic repertoires of NRPS Cy domains and P450 enzymes but also highlight a special enzymatic strategy for γ-thiolactone biosynthesis in nature.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 26\",\"pages\":\"22368–22386\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c14296\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c14296","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Thiolactomycin(1)具有独特的γ-硫代内酯环,是一种有前途的候选抗生素,专门针对细菌II型脂肪酸合成酶。尽管对其药理活性、作用方式和化学合成进行了广泛的研究,但负责形成决定活性的γ-硫代内酯环的酶促过程在很大程度上仍然未知。在这里,我们通过揭示非核糖体肽合成酶(NRPS) TlnC (TlnCCy)的缩合和杂环化(Cy)结构域,以及细胞色素P450酶TlnA,共同实现γ-硫代内酯组装来解决这个问题。tlncy介导一个不寻常的硫转移反应,使聚酮中间体硫化,生成硫代羧酸中间体。随后,TlnA作为γ-硫代内酯合成酶,通过远端自由基环化机制将线性硫代羧酸中间体转化为1。这些发现不仅扩展了NRPS Cy结构域和P450酶的功能和催化谱,而且突出了自然界中γ-硫代内酯生物合成的特殊酶促策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deciphering the Thiolactonization Mechanism in Thiolactomycin Biosynthesis

Deciphering the Thiolactonization Mechanism in Thiolactomycin Biosynthesis

Deciphering the Thiolactonization Mechanism in Thiolactomycin Biosynthesis

Thiolactomycin (1), which features a unique γ-thiolactone ring, is a promising antibiotic candidate that specifically targets bacterial type II fatty acid synthase. Despite extensive studies on its pharmacological activities, modes of action, and chemical synthesis, the enzymatic processes responsible for forming the activity-determining γ-thiolactone ring have remained largely unknown. Here, we resolve this problem by revealing that the condensation and heterocyclization (Cy) domain of the nonribosomal peptide synthetase (NRPS) TlnC (TlnCCy), along with the cytochrome P450 enzyme TlnA, cooperatively enable the γ-thiolactone assembly. TlnCCy mediates an unusual sulfurtransfer reaction to sulfurate the polyketide intermediate, generating a thiocarboxylate intermediate. Subsequently, TlnA acts as a γ-thiolactone synthase, converting the linear thiocarboxylate intermediate into 1 via a distal radical-based cyclization mechanism. These findings not only expand the functional and catalytic repertoires of NRPS Cy domains and P450 enzymes but also highlight a special enzymatic strategy for γ-thiolactone biosynthesis in nature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信