{"title":"由地球上丰富的过渡金属配合物敏化的光子上转换。","authors":"Pengyue Jin,Cui Wang","doi":"10.1039/d5cp00333d","DOIUrl":null,"url":null,"abstract":"Sensitized triplet-triplet annihilation upconversion (sTTA-UC) converts two lower-energy absorbed photons into one emitting photon of higher-energy, and has become a popular approach for a wide range of applications. Current photosensitizers rely mostly on transition metal complexes made of expensive platinum group elements, such as palladium, platinum, and osmium, due to their strong absorption in the visible range, unity intersystem crossing, and long-lived triplet excited lifetimes. In recent years, fundamental breakthroughs have been made with photoactive complexes based on earth-abundant 3d metals including chromium, manganese, iron, cobalt, copper, and zinc, and 4d elements like zirconium and molybdenum. These novel complexes offer advantages, such as cost-effectiveness, sustainability, low toxicity, scalability for industrial use, and potential for innovative research in areas including catalysis and energy conversion, making them promising alternatives to noble metal-based photosensitizers in sTTA-UC and other fields. In this review, we delineate the recent advancements in sTTA-UC utilizing photoactive earth-abundant transition metal complexes. We explore their energy transfer mechanisms, evaluate their upconversion performance, discuss their applications, and outline the challenges and perspectives, aiming to offer insights for the development of novel photosensitizers based on earth-abundant metals for future research and applications.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon upconversion sensitized by earth-abundant transition metal complexes.\",\"authors\":\"Pengyue Jin,Cui Wang\",\"doi\":\"10.1039/d5cp00333d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitized triplet-triplet annihilation upconversion (sTTA-UC) converts two lower-energy absorbed photons into one emitting photon of higher-energy, and has become a popular approach for a wide range of applications. Current photosensitizers rely mostly on transition metal complexes made of expensive platinum group elements, such as palladium, platinum, and osmium, due to their strong absorption in the visible range, unity intersystem crossing, and long-lived triplet excited lifetimes. In recent years, fundamental breakthroughs have been made with photoactive complexes based on earth-abundant 3d metals including chromium, manganese, iron, cobalt, copper, and zinc, and 4d elements like zirconium and molybdenum. These novel complexes offer advantages, such as cost-effectiveness, sustainability, low toxicity, scalability for industrial use, and potential for innovative research in areas including catalysis and energy conversion, making them promising alternatives to noble metal-based photosensitizers in sTTA-UC and other fields. In this review, we delineate the recent advancements in sTTA-UC utilizing photoactive earth-abundant transition metal complexes. We explore their energy transfer mechanisms, evaluate their upconversion performance, discuss their applications, and outline the challenges and perspectives, aiming to offer insights for the development of novel photosensitizers based on earth-abundant metals for future research and applications.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp00333d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00333d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photon upconversion sensitized by earth-abundant transition metal complexes.
Sensitized triplet-triplet annihilation upconversion (sTTA-UC) converts two lower-energy absorbed photons into one emitting photon of higher-energy, and has become a popular approach for a wide range of applications. Current photosensitizers rely mostly on transition metal complexes made of expensive platinum group elements, such as palladium, platinum, and osmium, due to their strong absorption in the visible range, unity intersystem crossing, and long-lived triplet excited lifetimes. In recent years, fundamental breakthroughs have been made with photoactive complexes based on earth-abundant 3d metals including chromium, manganese, iron, cobalt, copper, and zinc, and 4d elements like zirconium and molybdenum. These novel complexes offer advantages, such as cost-effectiveness, sustainability, low toxicity, scalability for industrial use, and potential for innovative research in areas including catalysis and energy conversion, making them promising alternatives to noble metal-based photosensitizers in sTTA-UC and other fields. In this review, we delineate the recent advancements in sTTA-UC utilizing photoactive earth-abundant transition metal complexes. We explore their energy transfer mechanisms, evaluate their upconversion performance, discuss their applications, and outline the challenges and perspectives, aiming to offer insights for the development of novel photosensitizers based on earth-abundant metals for future research and applications.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.