{"title":"浅表白质微结构与阿尔茨海默病早期皮层病理沉积的关系。","authors":"Shuyue Wang,Fan Zhang,Qingze Zeng,Hui Hong,Yao Zhang,Linyun Xie,Miao Lin,Yeerfan Jiaerken,Xinfeng Yu,Ruiting Zhang,Xiao Luo,Kaicheng Li,Xiaopei Xu,Shiva Hassanzadeh-Behbahani,Bin Lin,Jarrett Rushmore,Chao Wang,Yogesh Rathi,Nikos Makris,Peiyu Huang,Minming Zhang,Jianzhong Sun,Lauren O'Donnell,","doi":"10.1212/wnl.0000000000213666","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES\r\nβ-amyloid (Aβ) and tau, 2 prominent pathologies of Alzheimer disease (AD), originate in cortical regions and primarily affect, and even spread along, the white matter tracts directly connected to these cortical regions. Superficial white matter (SWM), containing short-range association connections beneath the cortex, has been affected in mild cognitive impairment and AD, with gaps in understanding the disease's early stages. We perform a detailed investigation of individual SWM connections with cortical pathology deposition and cognition in the early stages of the AD continuum.\r\n\r\nMETHODS\r\nWe enroll participants with Aβ PET, tau PET, diffusion MRI, and cognitive status from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Harvard Aging Brain Study (HABS). We stratify participants into disease stages following the Aβ/tau (AT) framework. We use diffusion MRI tractography to analyze SWM fiber clusters and assess their microstructure through free-water modeling, identifying significant differences between pathologically staged groups. We investigate associations of diffusion measures in SWM fiber clusters with regional pathology deposition (Aβ- and tau- PET uptake) and cognition.\r\n\r\nRESULTS\r\nThe study includes 150 ADNI participants (mean age 73.6 years, 61.3% female) and 175 HABS participants (mean age 75.6 years, 61.1% female). We find the following: (1) SWM microstructure differs along the early-stage Alzheimer disease continuum, with primary abnormalities in posterior brain regions; (2) there are significant free-water alterations in cognitively intact but pathology-positive individuals (p < 0.05, false discovery rate [FDR] corrected); (3) associations are identified between free water in SWM connections and proximal pathologic deposition, as well as between free water in several connections and memory function (standardized β coefficient = [-0.297 to -0.352], all p < 0.05, FDR corrected); and (iv) free water of a temporal SWM connection mediates the impact of temporal tau on memory (95% CI = [-0.146 to -0.002], accounts for 15.0% of the total effect).\r\n\r\nDISCUSSION\r\nThe findings of this study suggest that the propagation of AD pathology and cognitive changes may involve SWM pathways even in the early stages, emphasizing the importance of SWM in developing AD therapies and early interventions.","PeriodicalId":19256,"journal":{"name":"Neurology","volume":"37 1","pages":"e213666"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of Superficial White Matter Microstructure With Cortical Pathology Deposition Across Early Stages of the AD Continuum.\",\"authors\":\"Shuyue Wang,Fan Zhang,Qingze Zeng,Hui Hong,Yao Zhang,Linyun Xie,Miao Lin,Yeerfan Jiaerken,Xinfeng Yu,Ruiting Zhang,Xiao Luo,Kaicheng Li,Xiaopei Xu,Shiva Hassanzadeh-Behbahani,Bin Lin,Jarrett Rushmore,Chao Wang,Yogesh Rathi,Nikos Makris,Peiyu Huang,Minming Zhang,Jianzhong Sun,Lauren O'Donnell,\",\"doi\":\"10.1212/wnl.0000000000213666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND AND OBJECTIVES\\r\\nβ-amyloid (Aβ) and tau, 2 prominent pathologies of Alzheimer disease (AD), originate in cortical regions and primarily affect, and even spread along, the white matter tracts directly connected to these cortical regions. Superficial white matter (SWM), containing short-range association connections beneath the cortex, has been affected in mild cognitive impairment and AD, with gaps in understanding the disease's early stages. We perform a detailed investigation of individual SWM connections with cortical pathology deposition and cognition in the early stages of the AD continuum.\\r\\n\\r\\nMETHODS\\r\\nWe enroll participants with Aβ PET, tau PET, diffusion MRI, and cognitive status from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Harvard Aging Brain Study (HABS). We stratify participants into disease stages following the Aβ/tau (AT) framework. We use diffusion MRI tractography to analyze SWM fiber clusters and assess their microstructure through free-water modeling, identifying significant differences between pathologically staged groups. We investigate associations of diffusion measures in SWM fiber clusters with regional pathology deposition (Aβ- and tau- PET uptake) and cognition.\\r\\n\\r\\nRESULTS\\r\\nThe study includes 150 ADNI participants (mean age 73.6 years, 61.3% female) and 175 HABS participants (mean age 75.6 years, 61.1% female). We find the following: (1) SWM microstructure differs along the early-stage Alzheimer disease continuum, with primary abnormalities in posterior brain regions; (2) there are significant free-water alterations in cognitively intact but pathology-positive individuals (p < 0.05, false discovery rate [FDR] corrected); (3) associations are identified between free water in SWM connections and proximal pathologic deposition, as well as between free water in several connections and memory function (standardized β coefficient = [-0.297 to -0.352], all p < 0.05, FDR corrected); and (iv) free water of a temporal SWM connection mediates the impact of temporal tau on memory (95% CI = [-0.146 to -0.002], accounts for 15.0% of the total effect).\\r\\n\\r\\nDISCUSSION\\r\\nThe findings of this study suggest that the propagation of AD pathology and cognitive changes may involve SWM pathways even in the early stages, emphasizing the importance of SWM in developing AD therapies and early interventions.\",\"PeriodicalId\":19256,\"journal\":{\"name\":\"Neurology\",\"volume\":\"37 1\",\"pages\":\"e213666\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1212/wnl.0000000000213666\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/wnl.0000000000213666","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Association of Superficial White Matter Microstructure With Cortical Pathology Deposition Across Early Stages of the AD Continuum.
BACKGROUND AND OBJECTIVES
β-amyloid (Aβ) and tau, 2 prominent pathologies of Alzheimer disease (AD), originate in cortical regions and primarily affect, and even spread along, the white matter tracts directly connected to these cortical regions. Superficial white matter (SWM), containing short-range association connections beneath the cortex, has been affected in mild cognitive impairment and AD, with gaps in understanding the disease's early stages. We perform a detailed investigation of individual SWM connections with cortical pathology deposition and cognition in the early stages of the AD continuum.
METHODS
We enroll participants with Aβ PET, tau PET, diffusion MRI, and cognitive status from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Harvard Aging Brain Study (HABS). We stratify participants into disease stages following the Aβ/tau (AT) framework. We use diffusion MRI tractography to analyze SWM fiber clusters and assess their microstructure through free-water modeling, identifying significant differences between pathologically staged groups. We investigate associations of diffusion measures in SWM fiber clusters with regional pathology deposition (Aβ- and tau- PET uptake) and cognition.
RESULTS
The study includes 150 ADNI participants (mean age 73.6 years, 61.3% female) and 175 HABS participants (mean age 75.6 years, 61.1% female). We find the following: (1) SWM microstructure differs along the early-stage Alzheimer disease continuum, with primary abnormalities in posterior brain regions; (2) there are significant free-water alterations in cognitively intact but pathology-positive individuals (p < 0.05, false discovery rate [FDR] corrected); (3) associations are identified between free water in SWM connections and proximal pathologic deposition, as well as between free water in several connections and memory function (standardized β coefficient = [-0.297 to -0.352], all p < 0.05, FDR corrected); and (iv) free water of a temporal SWM connection mediates the impact of temporal tau on memory (95% CI = [-0.146 to -0.002], accounts for 15.0% of the total effect).
DISCUSSION
The findings of this study suggest that the propagation of AD pathology and cognitive changes may involve SWM pathways even in the early stages, emphasizing the importance of SWM in developing AD therapies and early interventions.
期刊介绍:
Neurology, the official journal of the American Academy of Neurology, aspires to be the premier peer-reviewed journal for clinical neurology research. Its mission is to publish exceptional peer-reviewed original research articles, editorials, and reviews to improve patient care, education, clinical research, and professionalism in neurology.
As the leading clinical neurology journal worldwide, Neurology targets physicians specializing in nervous system diseases and conditions. It aims to advance the field by presenting new basic and clinical research that influences neurological practice. The journal is a leading source of cutting-edge, peer-reviewed information for the neurology community worldwide. Editorial content includes Research, Clinical/Scientific Notes, Views, Historical Neurology, NeuroImages, Humanities, Letters, and position papers from the American Academy of Neurology. The online version is considered the definitive version, encompassing all available content.
Neurology is indexed in prestigious databases such as MEDLINE/PubMed, Embase, Scopus, Biological Abstracts®, PsycINFO®, Current Contents®, Web of Science®, CrossRef, and Google Scholar.