{"title":"比较动力学使得在大型氧化还原酶中发现嵌入细菌铁氧化还蛋白结构域。","authors":"Jan A Siess, Vikas Nanda","doi":"10.1002/prot.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial ferredoxins are small iron-sulfur binding proteins that function as soluble electron shuttles between redox enzymes in the cell. Their simple 2×(β-α-β) fold, central metabolic function, and ubiquity across all kingdoms of life have led to the proposal that ferredoxins were likely among the earliest proteins. Today, ferredoxin-like folds are embedded in large, multidomain enzymes, suggesting ancient gene duplication and fusion events. In some cases, these embedded domains may have scant sequence or even structural homology to soluble counterparts, challenging the use of traditional phylogenetic tools to establish evolutionary relationships. In this study, we identify fragments of bacterial ferredoxins within larger oxidoreductases by integrating comparative sequence, structure, and dynamical attributes. Dynamics are computed using an elastic network model and analyzed for similarity of major normal modes. Using comparative dynamics, fragments of ferredoxin domains are found within larger proteins, even in cases of limited structural homology. This study also reveals a non-linear relationship between dynamical and structural similarities, suggesting that protein dynamics are more constrained than structure through evolutionary time. We propose that dynamical similarity is indicative of functional similarity, and since nature selects for function, that the inclusion of dynamical similarity, in addition to sequence and structure similarities, provides a more robust framework for inferring homology. Inclusion of dynamical attributes in comparative analysis will lead to a greater understanding of the deep-time evolution of modern protein nanomachines.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Dynamics Enables Discovery of Embedded Bacterial Ferredoxin Domains in Large Redox Enzymes.\",\"authors\":\"Jan A Siess, Vikas Nanda\",\"doi\":\"10.1002/prot.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial ferredoxins are small iron-sulfur binding proteins that function as soluble electron shuttles between redox enzymes in the cell. Their simple 2×(β-α-β) fold, central metabolic function, and ubiquity across all kingdoms of life have led to the proposal that ferredoxins were likely among the earliest proteins. Today, ferredoxin-like folds are embedded in large, multidomain enzymes, suggesting ancient gene duplication and fusion events. In some cases, these embedded domains may have scant sequence or even structural homology to soluble counterparts, challenging the use of traditional phylogenetic tools to establish evolutionary relationships. In this study, we identify fragments of bacterial ferredoxins within larger oxidoreductases by integrating comparative sequence, structure, and dynamical attributes. Dynamics are computed using an elastic network model and analyzed for similarity of major normal modes. Using comparative dynamics, fragments of ferredoxin domains are found within larger proteins, even in cases of limited structural homology. This study also reveals a non-linear relationship between dynamical and structural similarities, suggesting that protein dynamics are more constrained than structure through evolutionary time. We propose that dynamical similarity is indicative of functional similarity, and since nature selects for function, that the inclusion of dynamical similarity, in addition to sequence and structure similarities, provides a more robust framework for inferring homology. Inclusion of dynamical attributes in comparative analysis will lead to a greater understanding of the deep-time evolution of modern protein nanomachines.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparative Dynamics Enables Discovery of Embedded Bacterial Ferredoxin Domains in Large Redox Enzymes.
Bacterial ferredoxins are small iron-sulfur binding proteins that function as soluble electron shuttles between redox enzymes in the cell. Their simple 2×(β-α-β) fold, central metabolic function, and ubiquity across all kingdoms of life have led to the proposal that ferredoxins were likely among the earliest proteins. Today, ferredoxin-like folds are embedded in large, multidomain enzymes, suggesting ancient gene duplication and fusion events. In some cases, these embedded domains may have scant sequence or even structural homology to soluble counterparts, challenging the use of traditional phylogenetic tools to establish evolutionary relationships. In this study, we identify fragments of bacterial ferredoxins within larger oxidoreductases by integrating comparative sequence, structure, and dynamical attributes. Dynamics are computed using an elastic network model and analyzed for similarity of major normal modes. Using comparative dynamics, fragments of ferredoxin domains are found within larger proteins, even in cases of limited structural homology. This study also reveals a non-linear relationship between dynamical and structural similarities, suggesting that protein dynamics are more constrained than structure through evolutionary time. We propose that dynamical similarity is indicative of functional similarity, and since nature selects for function, that the inclusion of dynamical similarity, in addition to sequence and structure similarities, provides a more robust framework for inferring homology. Inclusion of dynamical attributes in comparative analysis will lead to a greater understanding of the deep-time evolution of modern protein nanomachines.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.