Julia Tao, Jason Murray, Hsin-Fang Tu, Darrell Fan, Ya-Chea Tsai, Ming-Hung Hu, Annie A Wu, Deyin Xing, Chien-Fu Hung, T-C Wu
{"title":"利用CRISPR-SONIC技术建立具有位点特异性癌基因插入的自发性小鼠HPV +口腔癌模型。","authors":"Julia Tao, Jason Murray, Hsin-Fang Tu, Darrell Fan, Ya-Chea Tsai, Ming-Hung Hu, Annie A Wu, Deyin Xing, Chien-Fu Hung, T-C Wu","doi":"10.1186/s13578-025-01427-5","DOIUrl":null,"url":null,"abstract":"<p><p>Human papillomavirus associated head and neck cancer (HPV + HNC) is rising globally, emphasizing the need for improved therapeutic and screening strategies. To test novel therapies and study HPV-related disease progression, it is vital to develop relevant preclinical models. However, many fail to address critical concerns, including generating a representative immune microenvironment and adequately modeling HPV-driven malignant transformation. Recent multi-omics studies reveal the significance of HPV integration location in HPV-related carcinogenesis and highlight the necessity of targeted treatment methods. Thus, we have developed a murine model of HPV16 + HNC modifying the published CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC) system for precise integration of HPV oncogenes. We showed that CRISPR-SONIC knock-in of Kras<sup>G12D</sup>, HPV16 E6 and E7, and a luciferase reporter at the murine β-actin 3'-UTR locus could induce spontaneous buccal tumors with sarcomatous morphology under transient or selective immunosuppression. Both preventative and therapeutic pNGVL4a-CRT/E7(detox) DNA vaccination could induce HPV16 E7-specific immune response and reduce tumor growth. Furthermore, CRISPR-SONIC knock-in of HPV16 E6 and E7 with co-delivery of HNC-relevant oncogenes AKT and c-Myc produced tumors in NSG mice capturing the characteristic carcinomic morphology of HPV + HNC. Overall, our model offers a robust platform for evaluating new therapies and exploring HPV-related carcinogenesis.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"84"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175459/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generation of a spontaneous murine HPV + oral cancer model with site-specific oncogene insertion using CRISPR-SONIC.\",\"authors\":\"Julia Tao, Jason Murray, Hsin-Fang Tu, Darrell Fan, Ya-Chea Tsai, Ming-Hung Hu, Annie A Wu, Deyin Xing, Chien-Fu Hung, T-C Wu\",\"doi\":\"10.1186/s13578-025-01427-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human papillomavirus associated head and neck cancer (HPV + HNC) is rising globally, emphasizing the need for improved therapeutic and screening strategies. To test novel therapies and study HPV-related disease progression, it is vital to develop relevant preclinical models. However, many fail to address critical concerns, including generating a representative immune microenvironment and adequately modeling HPV-driven malignant transformation. Recent multi-omics studies reveal the significance of HPV integration location in HPV-related carcinogenesis and highlight the necessity of targeted treatment methods. Thus, we have developed a murine model of HPV16 + HNC modifying the published CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC) system for precise integration of HPV oncogenes. We showed that CRISPR-SONIC knock-in of Kras<sup>G12D</sup>, HPV16 E6 and E7, and a luciferase reporter at the murine β-actin 3'-UTR locus could induce spontaneous buccal tumors with sarcomatous morphology under transient or selective immunosuppression. Both preventative and therapeutic pNGVL4a-CRT/E7(detox) DNA vaccination could induce HPV16 E7-specific immune response and reduce tumor growth. Furthermore, CRISPR-SONIC knock-in of HPV16 E6 and E7 with co-delivery of HNC-relevant oncogenes AKT and c-Myc produced tumors in NSG mice capturing the characteristic carcinomic morphology of HPV + HNC. Overall, our model offers a robust platform for evaluating new therapies and exploring HPV-related carcinogenesis.</p>\",\"PeriodicalId\":49095,\"journal\":{\"name\":\"Cell and Bioscience\",\"volume\":\"15 1\",\"pages\":\"84\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Bioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13578-025-01427-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01427-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Generation of a spontaneous murine HPV + oral cancer model with site-specific oncogene insertion using CRISPR-SONIC.
Human papillomavirus associated head and neck cancer (HPV + HNC) is rising globally, emphasizing the need for improved therapeutic and screening strategies. To test novel therapies and study HPV-related disease progression, it is vital to develop relevant preclinical models. However, many fail to address critical concerns, including generating a representative immune microenvironment and adequately modeling HPV-driven malignant transformation. Recent multi-omics studies reveal the significance of HPV integration location in HPV-related carcinogenesis and highlight the necessity of targeted treatment methods. Thus, we have developed a murine model of HPV16 + HNC modifying the published CRISPR-based Somatic Oncogene kNock-In for Cancer Modeling (CRISPR-SONIC) system for precise integration of HPV oncogenes. We showed that CRISPR-SONIC knock-in of KrasG12D, HPV16 E6 and E7, and a luciferase reporter at the murine β-actin 3'-UTR locus could induce spontaneous buccal tumors with sarcomatous morphology under transient or selective immunosuppression. Both preventative and therapeutic pNGVL4a-CRT/E7(detox) DNA vaccination could induce HPV16 E7-specific immune response and reduce tumor growth. Furthermore, CRISPR-SONIC knock-in of HPV16 E6 and E7 with co-delivery of HNC-relevant oncogenes AKT and c-Myc produced tumors in NSG mice capturing the characteristic carcinomic morphology of HPV + HNC. Overall, our model offers a robust platform for evaluating new therapies and exploring HPV-related carcinogenesis.
期刊介绍:
Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.