混合型系统的间距比。

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Hua Yan
{"title":"混合型系统的间距比。","authors":"Hua Yan","doi":"10.1103/PhysRevE.111.054213","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of the consecutive level-spacing ratio is now widely used as a tool to distinguish integrable from chaotic quantum spectra, mostly due to its avoidance of the numerical spectral unfolding. Like the use of the Rosenzweig-Porter approach to obtain the Berry-Robnik distribution of level spacings in mixed-type systems, in this paper, we extend this approach to analytically derive the distribution of spacing ratios for random matrices comprised of independent integrable blocks and chaotic blocks. We have numerically confirmed this analytical result using random matrix theory in paradigmatic models such as the quantum kicked rotor and the Hénon-Heiles system.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-1","pages":"054213"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spacing ratios in mixed-type systems.\",\"authors\":\"Hua Yan\",\"doi\":\"10.1103/PhysRevE.111.054213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The distribution of the consecutive level-spacing ratio is now widely used as a tool to distinguish integrable from chaotic quantum spectra, mostly due to its avoidance of the numerical spectral unfolding. Like the use of the Rosenzweig-Porter approach to obtain the Berry-Robnik distribution of level spacings in mixed-type systems, in this paper, we extend this approach to analytically derive the distribution of spacing ratios for random matrices comprised of independent integrable blocks and chaotic blocks. We have numerically confirmed this analytical result using random matrix theory in paradigmatic models such as the quantum kicked rotor and the Hénon-Heiles system.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"111 5-1\",\"pages\":\"054213\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.054213\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.054213","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

连续电平间距比的分布被广泛用于区分可积量子光谱和混沌量子光谱,主要是因为它避免了数值谱展开。与使用Rosenzweig-Porter方法获得混合型系统中水平间距的Berry-Robnik分布一样,本文将该方法推广到解析导出由独立可积块和混沌块组成的随机矩阵的间距比分布。我们利用随机矩阵理论在量子踢转子和hsamnon - heiles系统等范式模型中数值证实了这一分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spacing ratios in mixed-type systems.

The distribution of the consecutive level-spacing ratio is now widely used as a tool to distinguish integrable from chaotic quantum spectra, mostly due to its avoidance of the numerical spectral unfolding. Like the use of the Rosenzweig-Porter approach to obtain the Berry-Robnik distribution of level spacings in mixed-type systems, in this paper, we extend this approach to analytically derive the distribution of spacing ratios for random matrices comprised of independent integrable blocks and chaotic blocks. We have numerically confirmed this analytical result using random matrix theory in paradigmatic models such as the quantum kicked rotor and the Hénon-Heiles system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信