桥接扩散后验抽样与蒙特卡罗方法综述。

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yazid Janati, Eric Moulines, Jimmy Olsson, Alain Oliviero-Durmus
{"title":"桥接扩散后验抽样与蒙特卡罗方法综述。","authors":"Yazid Janati, Eric Moulines, Jimmy Olsson, Alain Oliviero-Durmus","doi":"10.1098/rsta.2024.0331","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion models enable the synthesis of highly accurate samples from complex distributions and have become foundational in generative modelling. Recently, they have demonstrated significant potential for solving Bayesian inverse problems by serving as priors. This review offers a comprehensive overview of current methods that leverage <i>pre-trained</i> diffusion models alongside Monte Carlo methods to address Bayesian inverse problems without requiring additional training. We show that these methods primarily employ a <i>twisting</i> mechanism for the intermediate distributions within the diffusion process, guiding the simulations towards the posterior distribution. We describe how various Monte Carlo methods are then used to aid in sampling from these twisted distributions.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2299","pages":"20240331"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging diffusion posterior sampling and Monte Carlo methods: a survey.\",\"authors\":\"Yazid Janati, Eric Moulines, Jimmy Olsson, Alain Oliviero-Durmus\",\"doi\":\"10.1098/rsta.2024.0331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion models enable the synthesis of highly accurate samples from complex distributions and have become foundational in generative modelling. Recently, they have demonstrated significant potential for solving Bayesian inverse problems by serving as priors. This review offers a comprehensive overview of current methods that leverage <i>pre-trained</i> diffusion models alongside Monte Carlo methods to address Bayesian inverse problems without requiring additional training. We show that these methods primarily employ a <i>twisting</i> mechanism for the intermediate distributions within the diffusion process, guiding the simulations towards the posterior distribution. We describe how various Monte Carlo methods are then used to aid in sampling from these twisted distributions.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2299\",\"pages\":\"20240331\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0331\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0331","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

扩散模型能够从复杂的分布中合成高度精确的样本,并已成为生成建模的基础。最近,它们在解决贝叶斯逆问题上表现出了巨大的潜力,可以作为先验。这篇综述全面概述了目前利用预训练扩散模型和蒙特卡罗方法解决贝叶斯逆问题而不需要额外训练的方法。我们表明,这些方法主要采用了扩散过程中中间分布的扭曲机制,将模拟引向后验分布。我们描述了如何使用各种蒙特卡罗方法来帮助从这些扭曲分布中采样。本文是主题问题“生成建模与贝叶斯推理:反问题的新范式”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging diffusion posterior sampling and Monte Carlo methods: a survey.

Diffusion models enable the synthesis of highly accurate samples from complex distributions and have become foundational in generative modelling. Recently, they have demonstrated significant potential for solving Bayesian inverse problems by serving as priors. This review offers a comprehensive overview of current methods that leverage pre-trained diffusion models alongside Monte Carlo methods to address Bayesian inverse problems without requiring additional training. We show that these methods primarily employ a twisting mechanism for the intermediate distributions within the diffusion process, guiding the simulations towards the posterior distribution. We describe how various Monte Carlo methods are then used to aid in sampling from these twisted distributions.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信