基于生成模型的地球物理流体动力学贝叶斯推断。

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alexander Lobbe, Dan Crisan, Oana Lang
{"title":"基于生成模型的地球物理流体动力学贝叶斯推断。","authors":"Alexander Lobbe, Dan Crisan, Oana Lang","doi":"10.1098/rsta.2024.0321","DOIUrl":null,"url":null,"abstract":"<p><p>Data assimilation plays a crucial role in numerical modelling, enabling the integration of real-world observations into mathematical models to enhance the accuracy and predictive capabilities of simulations. However, calibrating high-dimensional, nonlinear systems remains challenging. This article presents a novel calibration approach using diffusion generative models to produce synthetic data that align with observed numerical solutions of a stochastic partial differential equation. These samples enable efficient model reduction, assimilating data from a high-resolution rotating shallow water equation with 10<sup>4</sup> degrees of freedom into a reduced stochastic system with significantly fewer degrees of freedom. The synthetic samples are integrated into a particle filtering method, enhanced with tempering and jittering, to handle complex, multi-modal distributions. Our results demonstrate that generative models improve particle filter accuracy, offering a more computationally efficient solution for data assimilation and model calibration.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2299","pages":"20240321"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12201588/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference for geophysical fluid dynamics using generative models.\",\"authors\":\"Alexander Lobbe, Dan Crisan, Oana Lang\",\"doi\":\"10.1098/rsta.2024.0321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data assimilation plays a crucial role in numerical modelling, enabling the integration of real-world observations into mathematical models to enhance the accuracy and predictive capabilities of simulations. However, calibrating high-dimensional, nonlinear systems remains challenging. This article presents a novel calibration approach using diffusion generative models to produce synthetic data that align with observed numerical solutions of a stochastic partial differential equation. These samples enable efficient model reduction, assimilating data from a high-resolution rotating shallow water equation with 10<sup>4</sup> degrees of freedom into a reduced stochastic system with significantly fewer degrees of freedom. The synthetic samples are integrated into a particle filtering method, enhanced with tempering and jittering, to handle complex, multi-modal distributions. Our results demonstrate that generative models improve particle filter accuracy, offering a more computationally efficient solution for data assimilation and model calibration.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2299\",\"pages\":\"20240321\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12201588/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0321\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0321","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数据同化在数值模拟中起着至关重要的作用,能够将真实世界的观测数据整合到数学模型中,以提高模拟的准确性和预测能力。然而,校准高维非线性系统仍然具有挑战性。本文提出了一种新的校准方法,使用扩散生成模型来生成与随机偏微分方程的观测数值解对齐的合成数据。这些样本实现了有效的模型简化,将具有104自由度的高分辨率旋转浅水方程中的数据同化到具有更少自由度的简化随机系统中。合成样品被集成到粒子滤波方法中,增强了回火和抖动,以处理复杂的多模态分布。我们的研究结果表明,生成模型提高了粒子滤波的精度,为数据同化和模型校准提供了一个计算效率更高的解决方案。本文是主题问题“生成建模与贝叶斯推理:反问题的新范式”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference for geophysical fluid dynamics using generative models.

Data assimilation plays a crucial role in numerical modelling, enabling the integration of real-world observations into mathematical models to enhance the accuracy and predictive capabilities of simulations. However, calibrating high-dimensional, nonlinear systems remains challenging. This article presents a novel calibration approach using diffusion generative models to produce synthetic data that align with observed numerical solutions of a stochastic partial differential equation. These samples enable efficient model reduction, assimilating data from a high-resolution rotating shallow water equation with 104 degrees of freedom into a reduced stochastic system with significantly fewer degrees of freedom. The synthetic samples are integrated into a particle filtering method, enhanced with tempering and jittering, to handle complex, multi-modal distributions. Our results demonstrate that generative models improve particle filter accuracy, offering a more computationally efficient solution for data assimilation and model calibration.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信