Hao Xiong, Haiqing Gao, Jianji Wan, Jieping Xiao, Xiaoqun Luo, Xiuqin Dong, Yueheng Wu, Tao Liu
{"title":"全外显子组测序鉴定Werner综合征家族中WRN基因的新移码突变和功能分析。","authors":"Hao Xiong, Haiqing Gao, Jianji Wan, Jieping Xiao, Xiaoqun Luo, Xiuqin Dong, Yueheng Wu, Tao Liu","doi":"10.1002/mgg3.70118","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Werner syndrome (WS) is a rare recessive disorder characterized by premature aging and metabolic abnormalities. WS is caused by mutations in the WS RecQ-like helicase gene (WRN), which encodes the WRN RecQ-like helicase protein. This study aimed to identify the deletion mutation in the WRN gene within the WS family and comprehensively analyze its regulatory role.</p><p><strong>Methods: </strong>We utilized whole exome sequencing to assess gene mutations in non-close relatives of two patients with WS. The mutation was further verified using Sanger sequencing. Subsequently, the pathophysiological characteristics of the mutation were examined using Western blotting, subcellular localization determination, conservative analysis, and three-dimensional (3D) protein structure prediction.</p><p><strong>Results: </strong>Whole exome sequencing revealed a previously unreported homozygous mutation c.3244delG (p.Val1082Tyrfs*17) within exon 27 of the WRN gene. Sanger sequencing confirmed the presence of a homozygous mutation in the two patients, while a heterozygous mutation was identified in the other six family members. Western blotting revealed that the c.3244delG mutation in the WRN gene resulted in a reduced molecular weight of the mutated WRN protein. Furthermore, subcellular localization experiments revealed that the mutant WRN protein could not be effectively transported to the nucleus. Some studies reported that the mutation exhibits a high conservation rate across various species. The three-dimensional structure prediction indicates that the mutant WRN protein exhibits a distinct structure compared to the wild-type protein.</p><p><strong>Conclusions: </strong>This study identified a frameshift mutation in the WRN gene, which was associated with WS. The subsequent functional analysis revealed the inefficiency of the mutated protein. This study broadens the spectrum of known WRN mutations and enhances the comprehension of WS pathogenesis.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"13 6","pages":"e70118"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole Exome Sequencing Identifies a Novel Frameshift Mutation of the WRN Gene in a Werner Syndrome Family and Functional Analysis.\",\"authors\":\"Hao Xiong, Haiqing Gao, Jianji Wan, Jieping Xiao, Xiaoqun Luo, Xiuqin Dong, Yueheng Wu, Tao Liu\",\"doi\":\"10.1002/mgg3.70118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Werner syndrome (WS) is a rare recessive disorder characterized by premature aging and metabolic abnormalities. WS is caused by mutations in the WS RecQ-like helicase gene (WRN), which encodes the WRN RecQ-like helicase protein. This study aimed to identify the deletion mutation in the WRN gene within the WS family and comprehensively analyze its regulatory role.</p><p><strong>Methods: </strong>We utilized whole exome sequencing to assess gene mutations in non-close relatives of two patients with WS. The mutation was further verified using Sanger sequencing. Subsequently, the pathophysiological characteristics of the mutation were examined using Western blotting, subcellular localization determination, conservative analysis, and three-dimensional (3D) protein structure prediction.</p><p><strong>Results: </strong>Whole exome sequencing revealed a previously unreported homozygous mutation c.3244delG (p.Val1082Tyrfs*17) within exon 27 of the WRN gene. Sanger sequencing confirmed the presence of a homozygous mutation in the two patients, while a heterozygous mutation was identified in the other six family members. Western blotting revealed that the c.3244delG mutation in the WRN gene resulted in a reduced molecular weight of the mutated WRN protein. Furthermore, subcellular localization experiments revealed that the mutant WRN protein could not be effectively transported to the nucleus. Some studies reported that the mutation exhibits a high conservation rate across various species. The three-dimensional structure prediction indicates that the mutant WRN protein exhibits a distinct structure compared to the wild-type protein.</p><p><strong>Conclusions: </strong>This study identified a frameshift mutation in the WRN gene, which was associated with WS. The subsequent functional analysis revealed the inefficiency of the mutated protein. This study broadens the spectrum of known WRN mutations and enhances the comprehension of WS pathogenesis.</p>\",\"PeriodicalId\":18852,\"journal\":{\"name\":\"Molecular Genetics & Genomic Medicine\",\"volume\":\"13 6\",\"pages\":\"e70118\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics & Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mgg3.70118\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.70118","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Whole Exome Sequencing Identifies a Novel Frameshift Mutation of the WRN Gene in a Werner Syndrome Family and Functional Analysis.
Introduction: Werner syndrome (WS) is a rare recessive disorder characterized by premature aging and metabolic abnormalities. WS is caused by mutations in the WS RecQ-like helicase gene (WRN), which encodes the WRN RecQ-like helicase protein. This study aimed to identify the deletion mutation in the WRN gene within the WS family and comprehensively analyze its regulatory role.
Methods: We utilized whole exome sequencing to assess gene mutations in non-close relatives of two patients with WS. The mutation was further verified using Sanger sequencing. Subsequently, the pathophysiological characteristics of the mutation were examined using Western blotting, subcellular localization determination, conservative analysis, and three-dimensional (3D) protein structure prediction.
Results: Whole exome sequencing revealed a previously unreported homozygous mutation c.3244delG (p.Val1082Tyrfs*17) within exon 27 of the WRN gene. Sanger sequencing confirmed the presence of a homozygous mutation in the two patients, while a heterozygous mutation was identified in the other six family members. Western blotting revealed that the c.3244delG mutation in the WRN gene resulted in a reduced molecular weight of the mutated WRN protein. Furthermore, subcellular localization experiments revealed that the mutant WRN protein could not be effectively transported to the nucleus. Some studies reported that the mutation exhibits a high conservation rate across various species. The three-dimensional structure prediction indicates that the mutant WRN protein exhibits a distinct structure compared to the wild-type protein.
Conclusions: This study identified a frameshift mutation in the WRN gene, which was associated with WS. The subsequent functional analysis revealed the inefficiency of the mutated protein. This study broadens the spectrum of known WRN mutations and enhances the comprehension of WS pathogenesis.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.