Mohamed Ibrahim, Meisam Omidi, Arndt Guentsch, Joseph Gaffney, Jennifer Talley
{"title":"确保牙科教育的完整性:开发一种新的人工智能模型,用于临床前牙髓治疗过程中一致和可追溯的图像分析。","authors":"Mohamed Ibrahim, Meisam Omidi, Arndt Guentsch, Joseph Gaffney, Jennifer Talley","doi":"10.1111/iej.14273","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Academic integrity is crucial in dental education, especially during practical exams assessing competencies. Traditional oversight may not detect sophisticated academic dishonesty methods like radiograph substitution or tampering. This study aimed to develop and evaluate a novel artificial intelligence (AI) model utilizing a Siamese neural network to detect inconsistencies in radiographic images taken for root canal treatment (RCT) procedures in preclinical endodontic courses, thereby enhancing educational integrity.</p><p><strong>Methododology: </strong>A Siamese neural network was designed to compare radiographs from different RCT procedures. The model was trained on 3390 radiographs, with data augmentation applied to improve generalizability. The dataset was split into training, validation, and testing subsets. Performance metrics included accuracy, precision, sensitivity (recall), and F1-score. Cross-validation and hyperparameter tuning optimized the model.</p><p><strong>Results: </strong>Our AI model achieved an accuracy of 89.31%, a precision of 76.82%, a sensitivity of 84.82%, and an F1-score of 80.50%. The optimal similarity threshold was 0.48, where maximum accuracy was observed. The confusion matrix indicated a high rate of correct classifications, and cross-validation confirmed the model's robustness with a standard deviation of 1.95% across folds.</p><p><strong>Conclusions: </strong>The AI-driven Siamese neural network effectively detects radiographic inconsistencies in RCT preclinical procedures. Implementing this novel model will serve as an objective tool to uphold academic integrity in dental education, enhance the fairness and reliability of assessments, promote a culture of honesty amongst students, and reduce the administrative burden on educators.</p>","PeriodicalId":13724,"journal":{"name":"International endodontic journal","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensuring integrity in dental education: Developing a novel AI model for consistent and traceable image analysis in preclinical endodontic procedures.\",\"authors\":\"Mohamed Ibrahim, Meisam Omidi, Arndt Guentsch, Joseph Gaffney, Jennifer Talley\",\"doi\":\"10.1111/iej.14273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Academic integrity is crucial in dental education, especially during practical exams assessing competencies. Traditional oversight may not detect sophisticated academic dishonesty methods like radiograph substitution or tampering. This study aimed to develop and evaluate a novel artificial intelligence (AI) model utilizing a Siamese neural network to detect inconsistencies in radiographic images taken for root canal treatment (RCT) procedures in preclinical endodontic courses, thereby enhancing educational integrity.</p><p><strong>Methododology: </strong>A Siamese neural network was designed to compare radiographs from different RCT procedures. The model was trained on 3390 radiographs, with data augmentation applied to improve generalizability. The dataset was split into training, validation, and testing subsets. Performance metrics included accuracy, precision, sensitivity (recall), and F1-score. Cross-validation and hyperparameter tuning optimized the model.</p><p><strong>Results: </strong>Our AI model achieved an accuracy of 89.31%, a precision of 76.82%, a sensitivity of 84.82%, and an F1-score of 80.50%. The optimal similarity threshold was 0.48, where maximum accuracy was observed. The confusion matrix indicated a high rate of correct classifications, and cross-validation confirmed the model's robustness with a standard deviation of 1.95% across folds.</p><p><strong>Conclusions: </strong>The AI-driven Siamese neural network effectively detects radiographic inconsistencies in RCT preclinical procedures. Implementing this novel model will serve as an objective tool to uphold academic integrity in dental education, enhance the fairness and reliability of assessments, promote a culture of honesty amongst students, and reduce the administrative burden on educators.</p>\",\"PeriodicalId\":13724,\"journal\":{\"name\":\"International endodontic journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International endodontic journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/iej.14273\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International endodontic journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/iej.14273","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Ensuring integrity in dental education: Developing a novel AI model for consistent and traceable image analysis in preclinical endodontic procedures.
Aim: Academic integrity is crucial in dental education, especially during practical exams assessing competencies. Traditional oversight may not detect sophisticated academic dishonesty methods like radiograph substitution or tampering. This study aimed to develop and evaluate a novel artificial intelligence (AI) model utilizing a Siamese neural network to detect inconsistencies in radiographic images taken for root canal treatment (RCT) procedures in preclinical endodontic courses, thereby enhancing educational integrity.
Methododology: A Siamese neural network was designed to compare radiographs from different RCT procedures. The model was trained on 3390 radiographs, with data augmentation applied to improve generalizability. The dataset was split into training, validation, and testing subsets. Performance metrics included accuracy, precision, sensitivity (recall), and F1-score. Cross-validation and hyperparameter tuning optimized the model.
Results: Our AI model achieved an accuracy of 89.31%, a precision of 76.82%, a sensitivity of 84.82%, and an F1-score of 80.50%. The optimal similarity threshold was 0.48, where maximum accuracy was observed. The confusion matrix indicated a high rate of correct classifications, and cross-validation confirmed the model's robustness with a standard deviation of 1.95% across folds.
Conclusions: The AI-driven Siamese neural network effectively detects radiographic inconsistencies in RCT preclinical procedures. Implementing this novel model will serve as an objective tool to uphold academic integrity in dental education, enhance the fairness and reliability of assessments, promote a culture of honesty amongst students, and reduce the administrative burden on educators.
期刊介绍:
The International Endodontic Journal is published monthly and strives to publish original articles of the highest quality to disseminate scientific and clinical knowledge; all manuscripts are subjected to peer review. Original scientific articles are published in the areas of biomedical science, applied materials science, bioengineering, epidemiology and social science relevant to endodontic disease and its management, and to the restoration of root-treated teeth. In addition, review articles, reports of clinical cases, book reviews, summaries and abstracts of scientific meetings and news items are accepted.
The International Endodontic Journal is essential reading for general dental practitioners, specialist endodontists, research, scientists and dental teachers.