NRF2通过ME1维持氧化还原平衡,NRF2抑制剂在npm1突变的急性髓性白血病中与venetoclax协同作用。

IF 6 3区 医学 Q1 CELL BIOLOGY
Jiayuan Hu, Zihao Yuan, Yan Shu, Jun Ren, Jing Yang, Lisha Tang, Xingyu Wei, Yongcan Liu, Fangfang Jin, Qiaoling Xiao, Xinyi Chen, Nan Wu, Wen Zhao, Ziwei Li, Ling Zhang
{"title":"NRF2通过ME1维持氧化还原平衡,NRF2抑制剂在npm1突变的急性髓性白血病中与venetoclax协同作用。","authors":"Jiayuan Hu, Zihao Yuan, Yan Shu, Jun Ren, Jing Yang, Lisha Tang, Xingyu Wei, Yongcan Liu, Fangfang Jin, Qiaoling Xiao, Xinyi Chen, Nan Wu, Wen Zhao, Ziwei Li, Ling Zhang","doi":"10.1186/s40170-025-00401-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations represents a distinct subtype of leukemia. Emerging evidence suggests that regulation of redox metabolism contributes to tumorigenesis and reveals a metabolic vulnerability in anti-tumor therapies. However, the role of redox homeostasis between reactive oxygen species (ROS) and antioxidant systems plays in NPM1-mutated AML has not been fully elucidated.</p><p><strong>Methods: </strong>First, ROS-related metabolic pathways in NPM1-mutated AML were analyzed using RNA-sequencing data. Intracellular and mitochondrial ROS levels in leukemia cells were detected using flow cytometry (FCM). The expression of nuclear factor (erythroid-derived 2)-like 2 (NRF2) was analyzed in public databases and further validated in AML primary blasts and cell lines by quantitative real-time PCR (qRT-PCR), western blotting, and immunofluorescence. Next, the mechanism underlying NRF2 expression was investigated through the RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP) and rescue experiments. Additionally, the downstream target gene of NRF2 was identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays. Furthermore, RNA interference and the NRF2 inhibitor ML385 were applied to explore the role of NRF2 in leukemia. Finally, the anti-leukemic effects of ML385 alone or in combination with the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax on AML cells were investigated using FCM analysis and western blotting, and further explored in cell line-derived xenograft (CDX) mouse models.</p><p><strong>Results: </strong>In this study, we identified significant ROS accumulation in leukemia cells with NPM1 mutations. Meanwhile, elevated NRF2 expression and its nuclear localization were observed in NPM1-mutated AML cells. The high NRF2 expression levels were at least partially induced by fat mass and obesity-associated protein (FTO) via m<sup>6</sup>A modification. Functionally, NRF2 exerts its antioxidant effects by transcriptionally upregulating malic enzyme 1 (ME1) expression and enhancing its activity. Targeting NRF2/ME1 axis reduced NADPH/NADP<sup>+</sup> ratio, increased ROS levels, impaired leukemia cell viability, and promoted apoptosis. More importantly, NRF2 inhibitor ML385 in combination with venetoclax showed synergistic anti-leukemic activity in vitro and in vivo.</p><p><strong>Conclusion: </strong>Overall, our findings provide new insight into the therapeutic potential of targeting NRF2 and guide the development of innovative combination therapies in NPM1-mutated AML.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"32"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177962/pdf/","citationCount":"0","resultStr":"{\"title\":\"NRF2 maintains redox balance via ME1 and NRF2 inhibitor synergizes with venetoclax in NPM1-mutated acute myeloid leukemia.\",\"authors\":\"Jiayuan Hu, Zihao Yuan, Yan Shu, Jun Ren, Jing Yang, Lisha Tang, Xingyu Wei, Yongcan Liu, Fangfang Jin, Qiaoling Xiao, Xinyi Chen, Nan Wu, Wen Zhao, Ziwei Li, Ling Zhang\",\"doi\":\"10.1186/s40170-025-00401-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations represents a distinct subtype of leukemia. Emerging evidence suggests that regulation of redox metabolism contributes to tumorigenesis and reveals a metabolic vulnerability in anti-tumor therapies. However, the role of redox homeostasis between reactive oxygen species (ROS) and antioxidant systems plays in NPM1-mutated AML has not been fully elucidated.</p><p><strong>Methods: </strong>First, ROS-related metabolic pathways in NPM1-mutated AML were analyzed using RNA-sequencing data. Intracellular and mitochondrial ROS levels in leukemia cells were detected using flow cytometry (FCM). The expression of nuclear factor (erythroid-derived 2)-like 2 (NRF2) was analyzed in public databases and further validated in AML primary blasts and cell lines by quantitative real-time PCR (qRT-PCR), western blotting, and immunofluorescence. Next, the mechanism underlying NRF2 expression was investigated through the RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP) and rescue experiments. Additionally, the downstream target gene of NRF2 was identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays. Furthermore, RNA interference and the NRF2 inhibitor ML385 were applied to explore the role of NRF2 in leukemia. Finally, the anti-leukemic effects of ML385 alone or in combination with the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax on AML cells were investigated using FCM analysis and western blotting, and further explored in cell line-derived xenograft (CDX) mouse models.</p><p><strong>Results: </strong>In this study, we identified significant ROS accumulation in leukemia cells with NPM1 mutations. Meanwhile, elevated NRF2 expression and its nuclear localization were observed in NPM1-mutated AML cells. The high NRF2 expression levels were at least partially induced by fat mass and obesity-associated protein (FTO) via m<sup>6</sup>A modification. Functionally, NRF2 exerts its antioxidant effects by transcriptionally upregulating malic enzyme 1 (ME1) expression and enhancing its activity. Targeting NRF2/ME1 axis reduced NADPH/NADP<sup>+</sup> ratio, increased ROS levels, impaired leukemia cell viability, and promoted apoptosis. More importantly, NRF2 inhibitor ML385 in combination with venetoclax showed synergistic anti-leukemic activity in vitro and in vivo.</p><p><strong>Conclusion: </strong>Overall, our findings provide new insight into the therapeutic potential of targeting NRF2 and guide the development of innovative combination therapies in NPM1-mutated AML.</p>\",\"PeriodicalId\":9418,\"journal\":{\"name\":\"Cancer & Metabolism\",\"volume\":\"13 1\",\"pages\":\"32\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40170-025-00401-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00401-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:核磷蛋白1 (NPM1)突变的急性髓性白血病(AML)是一种独特的白血病亚型。新出现的证据表明,氧化还原代谢的调节有助于肿瘤的发生,并揭示了抗肿瘤治疗中的代谢脆弱性。然而,活性氧(ROS)和抗氧化系统之间的氧化还原稳态在npm1突变的AML中所起的作用尚未完全阐明。方法:首先,利用rna测序数据分析npm1突变AML中ros相关代谢途径。采用流式细胞术(FCM)检测白血病细胞内及线粒体ROS水平。在公共数据库中分析核因子(红细胞衍生2)样2 (NRF2)的表达,并通过实时荧光定量PCR (qRT-PCR)、western blotting和免疫荧光进一步验证其在AML原代细胞和细胞系中的表达。接下来,我们通过RNA免疫沉淀(RIP)、甲基化RNA免疫沉淀(MeRIP)和抢救实验来研究NRF2表达的机制。此外,通过生物信息学分析和染色质免疫沉淀(ChIP)试验鉴定了NRF2的下游靶基因。此外,我们还利用RNA干扰和NRF2抑制剂ML385来探讨NRF2在白血病中的作用。最后,通过流式细胞术分析和western blotting研究ML385单独或联合b细胞淋巴瘤2 (BCL-2)抑制剂venetoclax对AML细胞的抗白血病作用,并在细胞系来源的异种移植(CDX)小鼠模型中进一步探索。结果:在本研究中,我们在NPM1突变的白血病细胞中发现了明显的ROS积累。同时,在npm1突变的AML细胞中,NRF2的表达和核定位升高。NRF2的高表达水平至少部分是由脂肪量和肥胖相关蛋白(FTO)通过m6A修饰诱导的。在功能上,NRF2通过上调苹果酸酶1 (ME1)的转录表达并增强其活性来发挥抗氧化作用。靶向NRF2/ME1轴可降低NADPH/NADP+比值,提高ROS水平,损害白血病细胞活力,促进细胞凋亡。更重要的是,NRF2抑制剂ML385与venetoclax联合在体外和体内均显示出协同抗白血病活性。结论:总的来说,我们的研究结果为靶向NRF2的治疗潜力提供了新的见解,并指导了npm1突变AML的创新联合治疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NRF2 maintains redox balance via ME1 and NRF2 inhibitor synergizes with venetoclax in NPM1-mutated acute myeloid leukemia.

Background: Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations represents a distinct subtype of leukemia. Emerging evidence suggests that regulation of redox metabolism contributes to tumorigenesis and reveals a metabolic vulnerability in anti-tumor therapies. However, the role of redox homeostasis between reactive oxygen species (ROS) and antioxidant systems plays in NPM1-mutated AML has not been fully elucidated.

Methods: First, ROS-related metabolic pathways in NPM1-mutated AML were analyzed using RNA-sequencing data. Intracellular and mitochondrial ROS levels in leukemia cells were detected using flow cytometry (FCM). The expression of nuclear factor (erythroid-derived 2)-like 2 (NRF2) was analyzed in public databases and further validated in AML primary blasts and cell lines by quantitative real-time PCR (qRT-PCR), western blotting, and immunofluorescence. Next, the mechanism underlying NRF2 expression was investigated through the RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP) and rescue experiments. Additionally, the downstream target gene of NRF2 was identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays. Furthermore, RNA interference and the NRF2 inhibitor ML385 were applied to explore the role of NRF2 in leukemia. Finally, the anti-leukemic effects of ML385 alone or in combination with the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax on AML cells were investigated using FCM analysis and western blotting, and further explored in cell line-derived xenograft (CDX) mouse models.

Results: In this study, we identified significant ROS accumulation in leukemia cells with NPM1 mutations. Meanwhile, elevated NRF2 expression and its nuclear localization were observed in NPM1-mutated AML cells. The high NRF2 expression levels were at least partially induced by fat mass and obesity-associated protein (FTO) via m6A modification. Functionally, NRF2 exerts its antioxidant effects by transcriptionally upregulating malic enzyme 1 (ME1) expression and enhancing its activity. Targeting NRF2/ME1 axis reduced NADPH/NADP+ ratio, increased ROS levels, impaired leukemia cell viability, and promoted apoptosis. More importantly, NRF2 inhibitor ML385 in combination with venetoclax showed synergistic anti-leukemic activity in vitro and in vivo.

Conclusion: Overall, our findings provide new insight into the therapeutic potential of targeting NRF2 and guide the development of innovative combination therapies in NPM1-mutated AML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信