{"title":"钛纳米泡沫力学性能与孔隙率的关系。","authors":"Thi-Thuy Binh Ngo, Van-Thuc Nguyen, Te-Hua Fang","doi":"10.1007/s00894-025-06416-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>This study employs molecular dynamics (MD) simulations to investigate the mechanical properties and deformation mechanisms of titanium (Ti) nanofoam under uniaxial tensile loading. The effects of porosity (ranging from 20 to 50%), strain rate (from 5 × 10⁸ to 5 × 10⁹ s⁻<sup>1</sup>), and temperature (from 300 to 900 K) on the tensile response are systematically examined. The results reveal that increasing porosity significantly reduces the ultimate tensile strength (UTS) and elastic modulus, while intensifying localized shear strain and stress concentration. These conditions facilitate the formation of amorphous phases and grain structures, and substantially influence dislocation behavior. Furthermore, higher strain rates are found to enhance strength by increasing both UTS and elastic modulus. In contrast, elevated temperatures induce phase transformations that improve ductility but compromise strength. Overall, this work provides valuable insights into tailoring the mechanical performance of Ti nanofoams, with implications for their use in biomedical, structural, and functional applications.</p><p><strong>Methods: </strong>The simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package. The results were analyzed using the Open Visualization Tool (OVITO). Structural analysis was conducted using common neighbor analysis (CNA) and polyhedral template matching (PTM), while dislocation behavior was studied with dislocation analysis (DXA). Surface meshes for volume and surface computations were generated using the construct surface mesh method.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 7","pages":"193"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porosity dependence of mechanical properties of titanium nanofoams.\",\"authors\":\"Thi-Thuy Binh Ngo, Van-Thuc Nguyen, Te-Hua Fang\",\"doi\":\"10.1007/s00894-025-06416-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>This study employs molecular dynamics (MD) simulations to investigate the mechanical properties and deformation mechanisms of titanium (Ti) nanofoam under uniaxial tensile loading. The effects of porosity (ranging from 20 to 50%), strain rate (from 5 × 10⁸ to 5 × 10⁹ s⁻<sup>1</sup>), and temperature (from 300 to 900 K) on the tensile response are systematically examined. The results reveal that increasing porosity significantly reduces the ultimate tensile strength (UTS) and elastic modulus, while intensifying localized shear strain and stress concentration. These conditions facilitate the formation of amorphous phases and grain structures, and substantially influence dislocation behavior. Furthermore, higher strain rates are found to enhance strength by increasing both UTS and elastic modulus. In contrast, elevated temperatures induce phase transformations that improve ductility but compromise strength. Overall, this work provides valuable insights into tailoring the mechanical performance of Ti nanofoams, with implications for their use in biomedical, structural, and functional applications.</p><p><strong>Methods: </strong>The simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package. The results were analyzed using the Open Visualization Tool (OVITO). Structural analysis was conducted using common neighbor analysis (CNA) and polyhedral template matching (PTM), while dislocation behavior was studied with dislocation analysis (DXA). Surface meshes for volume and surface computations were generated using the construct surface mesh method.</p>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 7\",\"pages\":\"193\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00894-025-06416-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-025-06416-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Porosity dependence of mechanical properties of titanium nanofoams.
Context: This study employs molecular dynamics (MD) simulations to investigate the mechanical properties and deformation mechanisms of titanium (Ti) nanofoam under uniaxial tensile loading. The effects of porosity (ranging from 20 to 50%), strain rate (from 5 × 10⁸ to 5 × 10⁹ s⁻1), and temperature (from 300 to 900 K) on the tensile response are systematically examined. The results reveal that increasing porosity significantly reduces the ultimate tensile strength (UTS) and elastic modulus, while intensifying localized shear strain and stress concentration. These conditions facilitate the formation of amorphous phases and grain structures, and substantially influence dislocation behavior. Furthermore, higher strain rates are found to enhance strength by increasing both UTS and elastic modulus. In contrast, elevated temperatures induce phase transformations that improve ductility but compromise strength. Overall, this work provides valuable insights into tailoring the mechanical performance of Ti nanofoams, with implications for their use in biomedical, structural, and functional applications.
Methods: The simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package. The results were analyzed using the Open Visualization Tool (OVITO). Structural analysis was conducted using common neighbor analysis (CNA) and polyhedral template matching (PTM), while dislocation behavior was studied with dislocation analysis (DXA). Surface meshes for volume and surface computations were generated using the construct surface mesh method.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.