金(I)基化合物抑制nsp14/nsp10和nsp13(解旋酶)发挥抗sars - cov -2的特性。

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingxin Chen, Xueying Wei, Chun-Lung Chan, Kaiming Tang, Shuofeng Yuan, Hongyan Li, Hongzhe Sun
{"title":"金(I)基化合物抑制nsp14/nsp10和nsp13(解旋酶)发挥抗sars - cov -2的特性。","authors":"Jingxin Chen, Xueying Wei, Chun-Lung Chan, Kaiming Tang, Shuofeng Yuan, Hongyan Li, Hongzhe Sun","doi":"10.1007/s00775-025-02118-9","DOIUrl":null,"url":null,"abstract":"<p><p>Au(I) compounds have long been associated with medicine for the treatment of various diseases, especially auranofin has been used for the treatment of rheumatoid arthritis. In addition, Au(I) based compounds also exhibit anti-cancer, anti-bacteria properties. The recent prevalence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused attention to investigate the antiviral potential of Au(I) compounds. Herein we demonstrate the pan-anti-SARS-CoV-2 activity of Au(I) metallodrugs in mammalian cells. We synthesized a panel of Au(I)-based compounds and found that these compounds could effectively inhibit the exoribonuclease and methyltransferase activities of SARS-CoV-2 nsp14/nsp10 complex, and the ATPase and DNA unwinding activities of SARS-CoV-2 nsp13 (helicase). Mechanistic studies reveal that Au(I) can not only displace the critical Zn(II) ions from nsp14/nsp10 complex and nsp13 but also changes the secondary and quaternary structure of nsp14 and perturbate the DNA unwinding of nsp13 by disrupting the ATP binding. This study illustrates a multi-target feature Au(I) compounds/drug agents for the viruses, highlighting their potential as pan-anti-SARS-CoV-2 (or relevant viruses) agents.</p>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Au(I)-based compounds inhibit nsp14/nsp10 and nsp13 (helicase) to exert anti-SARS-CoV-2 properties.\",\"authors\":\"Jingxin Chen, Xueying Wei, Chun-Lung Chan, Kaiming Tang, Shuofeng Yuan, Hongyan Li, Hongzhe Sun\",\"doi\":\"10.1007/s00775-025-02118-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Au(I) compounds have long been associated with medicine for the treatment of various diseases, especially auranofin has been used for the treatment of rheumatoid arthritis. In addition, Au(I) based compounds also exhibit anti-cancer, anti-bacteria properties. The recent prevalence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused attention to investigate the antiviral potential of Au(I) compounds. Herein we demonstrate the pan-anti-SARS-CoV-2 activity of Au(I) metallodrugs in mammalian cells. We synthesized a panel of Au(I)-based compounds and found that these compounds could effectively inhibit the exoribonuclease and methyltransferase activities of SARS-CoV-2 nsp14/nsp10 complex, and the ATPase and DNA unwinding activities of SARS-CoV-2 nsp13 (helicase). Mechanistic studies reveal that Au(I) can not only displace the critical Zn(II) ions from nsp14/nsp10 complex and nsp13 but also changes the secondary and quaternary structure of nsp14 and perturbate the DNA unwinding of nsp13 by disrupting the ATP binding. This study illustrates a multi-target feature Au(I) compounds/drug agents for the viruses, highlighting their potential as pan-anti-SARS-CoV-2 (or relevant viruses) agents.</p>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"Journal of Biological Inorganic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1007/s00775-025-02118-9\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-025-02118-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金(I)化合物长期以来一直与治疗各种疾病的药物有关,特别是金糠蛋白已被用于治疗类风湿性关节炎。此外,金(I)基化合物还具有抗癌、抗菌的特性。最近由严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)引起的COVID-19大流行引起了人们对Au(I)化合物抗病毒潜力的关注。本研究证明了金(I)金属药物在哺乳动物细胞中的泛抗sars - cov -2活性。我们合成了一组Au(I)基化合物,发现这些化合物可以有效抑制SARS-CoV-2 nsp14/nsp10复合物的外核糖核酸酶和甲基转移酶活性,以及SARS-CoV-2 nsp13(解旋酶)的atp酶和DNA解绕活性。机制研究表明,Au(I)不仅可以取代nsp14/nsp10复合物和nsp13中的关键Zn(II)离子,还可以改变nsp14的二级和四级结构,并通过破坏ATP结合扰乱nsp13的DNA解绕。该研究阐明了病毒的Au(I)化合物/药物制剂的多靶点特征,突出了它们作为泛抗sars - cov -2(或相关病毒)制剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Au(I)-based compounds inhibit nsp14/nsp10 and nsp13 (helicase) to exert anti-SARS-CoV-2 properties.

Au(I) compounds have long been associated with medicine for the treatment of various diseases, especially auranofin has been used for the treatment of rheumatoid arthritis. In addition, Au(I) based compounds also exhibit anti-cancer, anti-bacteria properties. The recent prevalence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused attention to investigate the antiviral potential of Au(I) compounds. Herein we demonstrate the pan-anti-SARS-CoV-2 activity of Au(I) metallodrugs in mammalian cells. We synthesized a panel of Au(I)-based compounds and found that these compounds could effectively inhibit the exoribonuclease and methyltransferase activities of SARS-CoV-2 nsp14/nsp10 complex, and the ATPase and DNA unwinding activities of SARS-CoV-2 nsp13 (helicase). Mechanistic studies reveal that Au(I) can not only displace the critical Zn(II) ions from nsp14/nsp10 complex and nsp13 but also changes the secondary and quaternary structure of nsp14 and perturbate the DNA unwinding of nsp13 by disrupting the ATP binding. This study illustrates a multi-target feature Au(I) compounds/drug agents for the viruses, highlighting their potential as pan-anti-SARS-CoV-2 (or relevant viruses) agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Inorganic Chemistry
Journal of Biological Inorganic Chemistry 化学-生化与分子生物学
CiteScore
5.90
自引率
3.30%
发文量
49
审稿时长
3 months
期刊介绍: Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信