通过机器学习构建可持续投资组合:ESG、可持续发展目标和情绪

IF 2.1 3区 经济学 Q2 BUSINESS, FINANCE
Xin Feng, Hans-Jörg von Mettenheim, Georgios Sermpinis, Charalampos Stasinakis
{"title":"通过机器学习构建可持续投资组合:ESG、可持续发展目标和情绪","authors":"Xin Feng,&nbsp;Hans-Jörg von Mettenheim,&nbsp;Georgios Sermpinis,&nbsp;Charalampos Stasinakis","doi":"10.1111/eufm.12531","DOIUrl":null,"url":null,"abstract":"<p>This study proposes portfolio construction strategies based on novel sentiment, ESG and SDG scores. We utilize natural language processing to establish a novel daily score system that mitigates concerns of different rating standards. The portfolios constructed are optimized via machine learning algorithms on a monthly basis using daily historical returns. Utilizing the equal-weighted portfolios as benchmarks, we empirically show that our optimized portfolios exhibit better trading performance in both the SPX500 and STOXX600 indices. The findings demonstrate that nonlinear models such as random forests, neural networks, and genetic algorithms can perform better than other machine learning models in portfolio management.</p>","PeriodicalId":47815,"journal":{"name":"European Financial Management","volume":"31 3","pages":"1148-1169"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eufm.12531","citationCount":"0","resultStr":"{\"title\":\"Sustainable Portfolio Construction via Machine Learning: ESG, SDG and Sentiment\",\"authors\":\"Xin Feng,&nbsp;Hans-Jörg von Mettenheim,&nbsp;Georgios Sermpinis,&nbsp;Charalampos Stasinakis\",\"doi\":\"10.1111/eufm.12531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes portfolio construction strategies based on novel sentiment, ESG and SDG scores. We utilize natural language processing to establish a novel daily score system that mitigates concerns of different rating standards. The portfolios constructed are optimized via machine learning algorithms on a monthly basis using daily historical returns. Utilizing the equal-weighted portfolios as benchmarks, we empirically show that our optimized portfolios exhibit better trading performance in both the SPX500 and STOXX600 indices. The findings demonstrate that nonlinear models such as random forests, neural networks, and genetic algorithms can perform better than other machine learning models in portfolio management.</p>\",\"PeriodicalId\":47815,\"journal\":{\"name\":\"European Financial Management\",\"volume\":\"31 3\",\"pages\":\"1148-1169\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eufm.12531\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Financial Management\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eufm.12531\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Financial Management","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eufm.12531","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出基于新颖情绪、ESG和SDG得分的投资组合构建策略。我们利用自然语言处理建立了一个新的每日评分系统,减轻了不同评分标准的担忧。构建的投资组合通过机器学习算法根据每日历史回报进行月度优化。利用等权重投资组合作为基准,我们实证表明,我们优化的投资组合在SPX500和STOXX600指数中都表现出更好的交易表现。研究结果表明,非线性模型,如随机森林、神经网络和遗传算法,在投资组合管理中可以比其他机器学习模型表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable Portfolio Construction via Machine Learning: ESG, SDG and Sentiment

This study proposes portfolio construction strategies based on novel sentiment, ESG and SDG scores. We utilize natural language processing to establish a novel daily score system that mitigates concerns of different rating standards. The portfolios constructed are optimized via machine learning algorithms on a monthly basis using daily historical returns. Utilizing the equal-weighted portfolios as benchmarks, we empirically show that our optimized portfolios exhibit better trading performance in both the SPX500 and STOXX600 indices. The findings demonstrate that nonlinear models such as random forests, neural networks, and genetic algorithms can perform better than other machine learning models in portfolio management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Financial Management
European Financial Management BUSINESS, FINANCE-
CiteScore
4.30
自引率
18.20%
发文量
60
期刊介绍: European Financial Management publishes the best research from around the world, providing a forum for both academics and practitioners concerned with the financial management of modern corporation and financial institutions. The journal publishes signficant new finance research on timely issues and highlights key trends in Europe in a clear and accessible way, with articles covering international research and practice that have direct or indirect bearing on Europe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信