显式超几何模块化方法1

IF 1.5 1区 数学 Q1 MATHEMATICS
Michael Allen , Brian Grove , Ling Long, Fang-Ting Tu
{"title":"显式超几何模块化方法1","authors":"Michael Allen ,&nbsp;Brian Grove ,&nbsp;Ling Long,&nbsp;Fang-Ting Tu","doi":"10.1016/j.aim.2025.110411","DOIUrl":null,"url":null,"abstract":"<div><div>The theories of hypergeometric functions and modular forms are highly intertwined. For example, particular values of truncated hypergeometric functions and hypergeometric character sums are often congruent or equal to Fourier coefficients of modular forms. In this series of papers, we develop and explore an explicit “Hypergeometric-Modularity” method for associating a modular form to a given hypergeometric datum. In particular, for certain length three and four hypergeometric data we give an explicit method for finding a modular form <em>f</em> such that the corresponding hypergeometric Galois representation has a subrepresentation isomorphic to the Deligne representation of <em>f</em>. Our method utilizes Ramanujan's theory of elliptic functions to alternative bases, commutative formal group laws, and supercongruences. As a byproduct, we give a collection of eta quotients with multiplicative coefficients constructed from hypergeometric functions. In the second paper, we discuss a number of applications, including explicit connections between hypergeometric values and periods of these explicit eta quotients as well as evaluation formulae for certain special <em>L</em>-values.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"478 ","pages":"Article 110411"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The explicit hypergeometric-modularity method I\",\"authors\":\"Michael Allen ,&nbsp;Brian Grove ,&nbsp;Ling Long,&nbsp;Fang-Ting Tu\",\"doi\":\"10.1016/j.aim.2025.110411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The theories of hypergeometric functions and modular forms are highly intertwined. For example, particular values of truncated hypergeometric functions and hypergeometric character sums are often congruent or equal to Fourier coefficients of modular forms. In this series of papers, we develop and explore an explicit “Hypergeometric-Modularity” method for associating a modular form to a given hypergeometric datum. In particular, for certain length three and four hypergeometric data we give an explicit method for finding a modular form <em>f</em> such that the corresponding hypergeometric Galois representation has a subrepresentation isomorphic to the Deligne representation of <em>f</em>. Our method utilizes Ramanujan's theory of elliptic functions to alternative bases, commutative formal group laws, and supercongruences. As a byproduct, we give a collection of eta quotients with multiplicative coefficients constructed from hypergeometric functions. In the second paper, we discuss a number of applications, including explicit connections between hypergeometric values and periods of these explicit eta quotients as well as evaluation formulae for certain special <em>L</em>-values.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"478 \",\"pages\":\"Article 110411\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003093\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003093","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

超几何函数和模形式的理论是高度交织在一起的。例如,截断的超几何函数和超几何特征和的特定值通常等于或等于模形式的傅里叶系数。在这一系列的论文中,我们发展并探索了一种显式的“超几何-模块化”方法,用于将模形式与给定的超几何基准相关联。特别地,对于一定长度的3和4超几何数据,我们给出了一种显式方法来寻找模形式f,使得相应的超几何伽罗瓦表示具有与f的Deligne表示同构的子表示。我们的方法利用拉马努金的椭圆函数理论来替代基、交换形式群律和超同余。作为一个副产品,我们给出了一个由超几何函数构造的带有乘系数的商的集合。在第二篇论文中,我们讨论了一些应用,包括这些显式商的超几何值与周期之间的显式联系以及某些特殊l值的求值公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The explicit hypergeometric-modularity method I
The theories of hypergeometric functions and modular forms are highly intertwined. For example, particular values of truncated hypergeometric functions and hypergeometric character sums are often congruent or equal to Fourier coefficients of modular forms. In this series of papers, we develop and explore an explicit “Hypergeometric-Modularity” method for associating a modular form to a given hypergeometric datum. In particular, for certain length three and four hypergeometric data we give an explicit method for finding a modular form f such that the corresponding hypergeometric Galois representation has a subrepresentation isomorphic to the Deligne representation of f. Our method utilizes Ramanujan's theory of elliptic functions to alternative bases, commutative formal group laws, and supercongruences. As a byproduct, we give a collection of eta quotients with multiplicative coefficients constructed from hypergeometric functions. In the second paper, we discuss a number of applications, including explicit connections between hypergeometric values and periods of these explicit eta quotients as well as evaluation formulae for certain special L-values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信