Ding-Bao Song , Yu Pan , Jian-Hua Yin , Zhen-Yu Yin , He-Fu Pu
{"title":"真空预压下格栅-水平-垂直复合排水系统阶段填土浆体固结分析","authors":"Ding-Bao Song , Yu Pan , Jian-Hua Yin , Zhen-Yu Yin , He-Fu Pu","doi":"10.1016/j.geotexmem.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a combined method utilizing grid-horizontal drains assisted by vacuum preloading for initial treatment, and vertical drains with vacuum preloading for further enhancement, aimed at the beneficial reuse of dredged marine sediments as fill material. A novel method for analyzing the consolidation of staged-filled soft soils with grid-horizontal and vertical drains under vacuum preloading is established, and a numerical model, called <strong>C</strong>ombined-drains <strong>C</strong>onsolidation <strong>S</strong>ettlement (CCS), is developed. CCS accounts for staged filling, drain combinations, creep strains, hydraulic conductivity anisotropy, vertical and radial flows, smear effects, time-dependent surcharge and/or vacuum loading, and variable compressibility and hydraulic conductivity throughout the consolidation process. A large-scale laboratory consolidation test is presented, focusing on staged-filled marine sediments treated by the combined system, demonstrating beneficial reuse potential of high-water-content dredged sediments. Settlement and water content predictions using CCS agree well with experimental results. The effects of paving rate (lateral spacing) and the number of grid-horizontal drain layers (vertical spacing) are evaluated using the CCS model. Based on these results, cost-effective design recommendations are proposed. Comparison of treatment efficiency shows the combined method significantly enhances improvement by enabling earlier application of vacuum consolidation than the PVD-only method.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1281-1298"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consolidation analysis of staged-filled soil slurry with combined grid-horizontal and vertical drains system under vacuum preloading\",\"authors\":\"Ding-Bao Song , Yu Pan , Jian-Hua Yin , Zhen-Yu Yin , He-Fu Pu\",\"doi\":\"10.1016/j.geotexmem.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a combined method utilizing grid-horizontal drains assisted by vacuum preloading for initial treatment, and vertical drains with vacuum preloading for further enhancement, aimed at the beneficial reuse of dredged marine sediments as fill material. A novel method for analyzing the consolidation of staged-filled soft soils with grid-horizontal and vertical drains under vacuum preloading is established, and a numerical model, called <strong>C</strong>ombined-drains <strong>C</strong>onsolidation <strong>S</strong>ettlement (CCS), is developed. CCS accounts for staged filling, drain combinations, creep strains, hydraulic conductivity anisotropy, vertical and radial flows, smear effects, time-dependent surcharge and/or vacuum loading, and variable compressibility and hydraulic conductivity throughout the consolidation process. A large-scale laboratory consolidation test is presented, focusing on staged-filled marine sediments treated by the combined system, demonstrating beneficial reuse potential of high-water-content dredged sediments. Settlement and water content predictions using CCS agree well with experimental results. The effects of paving rate (lateral spacing) and the number of grid-horizontal drain layers (vertical spacing) are evaluated using the CCS model. Based on these results, cost-effective design recommendations are proposed. Comparison of treatment efficiency shows the combined method significantly enhances improvement by enabling earlier application of vacuum consolidation than the PVD-only method.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 6\",\"pages\":\"Pages 1281-1298\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114425000767\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000767","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Consolidation analysis of staged-filled soil slurry with combined grid-horizontal and vertical drains system under vacuum preloading
This study presents a combined method utilizing grid-horizontal drains assisted by vacuum preloading for initial treatment, and vertical drains with vacuum preloading for further enhancement, aimed at the beneficial reuse of dredged marine sediments as fill material. A novel method for analyzing the consolidation of staged-filled soft soils with grid-horizontal and vertical drains under vacuum preloading is established, and a numerical model, called Combined-drains Consolidation Settlement (CCS), is developed. CCS accounts for staged filling, drain combinations, creep strains, hydraulic conductivity anisotropy, vertical and radial flows, smear effects, time-dependent surcharge and/or vacuum loading, and variable compressibility and hydraulic conductivity throughout the consolidation process. A large-scale laboratory consolidation test is presented, focusing on staged-filled marine sediments treated by the combined system, demonstrating beneficial reuse potential of high-water-content dredged sediments. Settlement and water content predictions using CCS agree well with experimental results. The effects of paving rate (lateral spacing) and the number of grid-horizontal drain layers (vertical spacing) are evaluated using the CCS model. Based on these results, cost-effective design recommendations are proposed. Comparison of treatment efficiency shows the combined method significantly enhances improvement by enabling earlier application of vacuum consolidation than the PVD-only method.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.