RoSiLC-RS:基于大语言模型和退步提示的鲁棒相似案例推荐系统

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guohang Zeng , George Tian , Guangquan Zhang , Jie Lu
{"title":"RoSiLC-RS:基于大语言模型和退步提示的鲁棒相似案例推荐系统","authors":"Guohang Zeng ,&nbsp;George Tian ,&nbsp;Guangquan Zhang ,&nbsp;Jie Lu","doi":"10.1016/j.neucom.2025.130660","DOIUrl":null,"url":null,"abstract":"<div><div>Legal case recommendation systems face significant challenges in the era of Large Language Models (LLMs). While LLMs offer unprecedented opportunities for understanding legal texts, they also introduce risks through AI-generated false legal content. Our survey reveals concerning gaps in public awareness: 41% of respondents incorrectly believe AI never generates false legal information, while only 6% understand potential legal liabilities. To address these issues, we propose RoSiLC-RS, a Robust Similar Legal Case Recommender System that guides LLMs to understand legal concepts at a higher abstraction level. Our system employs four key components: (1) abstraction processing to extract core legal elements, (2) semantic matching to identify similar case features, (3) LLM-powered explanation generation to provide detailed recommendation rationales, enhancing system explainability, and (4) a specialized detection module to identify and filter AI-generated false content. Comprehensive experiments on real-world legal datasets demonstrate that our method significantly outperforms traditional retrieval approaches in precision, relevance, explainability, and resistance to AI-generated content interference. This research provides both technological solutions and insights for the safe application of LLMs in legal domains.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130660"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoSiLC-RS:A Robust Similar Legal Case Recommender System Empowered by Large Language Model and Step-Back Prompting\",\"authors\":\"Guohang Zeng ,&nbsp;George Tian ,&nbsp;Guangquan Zhang ,&nbsp;Jie Lu\",\"doi\":\"10.1016/j.neucom.2025.130660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Legal case recommendation systems face significant challenges in the era of Large Language Models (LLMs). While LLMs offer unprecedented opportunities for understanding legal texts, they also introduce risks through AI-generated false legal content. Our survey reveals concerning gaps in public awareness: 41% of respondents incorrectly believe AI never generates false legal information, while only 6% understand potential legal liabilities. To address these issues, we propose RoSiLC-RS, a Robust Similar Legal Case Recommender System that guides LLMs to understand legal concepts at a higher abstraction level. Our system employs four key components: (1) abstraction processing to extract core legal elements, (2) semantic matching to identify similar case features, (3) LLM-powered explanation generation to provide detailed recommendation rationales, enhancing system explainability, and (4) a specialized detection module to identify and filter AI-generated false content. Comprehensive experiments on real-world legal datasets demonstrate that our method significantly outperforms traditional retrieval approaches in precision, relevance, explainability, and resistance to AI-generated content interference. This research provides both technological solutions and insights for the safe application of LLMs in legal domains.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"648 \",\"pages\":\"Article 130660\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225013323\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225013323","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在大语言模型(llm)时代,法律案例推荐系统面临着重大挑战。虽然法学硕士课程为理解法律文本提供了前所未有的机会,但它们也通过人工智能生成的虚假法律内容引入了风险。我们的调查揭示了公众意识的差距:41%的受访者错误地认为人工智能从未产生虚假的法律信息,而只有6%的受访者了解潜在的法律责任。为了解决这些问题,我们提出了RoSiLC-RS,一个强大的类似法律案例推荐系统,指导法学硕士在更高的抽象层次上理解法律概念。我们的系统采用四个关键组件:(1)抽象处理以提取核心法律要素,(2)语义匹配以识别相似的案例特征,(3)llm驱动的解释生成以提供详细的推荐理由,增强系统的可解释性,以及(4)专门的检测模块以识别和过滤人工智能生成的虚假内容。对现实世界法律数据集的综合实验表明,我们的方法在准确性、相关性、可解释性和对人工智能生成内容干扰的抵抗力方面显著优于传统的检索方法。本研究为法学硕士在法律领域的安全应用提供了技术解决方案和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RoSiLC-RS:A Robust Similar Legal Case Recommender System Empowered by Large Language Model and Step-Back Prompting
Legal case recommendation systems face significant challenges in the era of Large Language Models (LLMs). While LLMs offer unprecedented opportunities for understanding legal texts, they also introduce risks through AI-generated false legal content. Our survey reveals concerning gaps in public awareness: 41% of respondents incorrectly believe AI never generates false legal information, while only 6% understand potential legal liabilities. To address these issues, we propose RoSiLC-RS, a Robust Similar Legal Case Recommender System that guides LLMs to understand legal concepts at a higher abstraction level. Our system employs four key components: (1) abstraction processing to extract core legal elements, (2) semantic matching to identify similar case features, (3) LLM-powered explanation generation to provide detailed recommendation rationales, enhancing system explainability, and (4) a specialized detection module to identify and filter AI-generated false content. Comprehensive experiments on real-world legal datasets demonstrate that our method significantly outperforms traditional retrieval approaches in precision, relevance, explainability, and resistance to AI-generated content interference. This research provides both technological solutions and insights for the safe application of LLMs in legal domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信