f - resppoint:一种基于截锥体剔除的多模态融合目标检测算法

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jinjun Rao , Kai Yang , QinFei Zhao , Zhenwei Li , Jinbo Chen , Jingtao Lei , Mei Liu , Wojciech Giernacki
{"title":"f - resppoint:一种基于截锥体剔除的多模态融合目标检测算法","authors":"Jinjun Rao ,&nbsp;Kai Yang ,&nbsp;QinFei Zhao ,&nbsp;Zhenwei Li ,&nbsp;Jinbo Chen ,&nbsp;Jingtao Lei ,&nbsp;Mei Liu ,&nbsp;Wojciech Giernacki","doi":"10.1016/j.displa.2025.103135","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and lightweight 3D object detection is crucial for the perception ability of mobile intelligent robots. Aiming at the problem that current 3D object detection is difficult to balance lightweight and accuracy, this paper presents a multimodal fusion object detection method, F-ResPoint, based on point cloud culling in vision frustum. F-ResPoint is a lightweight two-stage object detection method, in which the frustum point cloud generation algorithm based on the improved YOLOv5 is used first to obtain the point cloud containing the object information in the view frustum from the point cloud in the original field. Then, the point cloud detection network based on the Residual-SA module is utilized for detecting the three-dimensional (3D) object from point cloud in the view frustum and obtaining its position and actual size of the object in 3D space. Experimental results demonstrate that this method achieves high detection accuracy and maintains good real-time performance while remaining lightweight.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"90 ","pages":"Article 103135"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"F-ResPoint: a multi-modal fusion object detection algorithm based on frustum culling\",\"authors\":\"Jinjun Rao ,&nbsp;Kai Yang ,&nbsp;QinFei Zhao ,&nbsp;Zhenwei Li ,&nbsp;Jinbo Chen ,&nbsp;Jingtao Lei ,&nbsp;Mei Liu ,&nbsp;Wojciech Giernacki\",\"doi\":\"10.1016/j.displa.2025.103135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and lightweight 3D object detection is crucial for the perception ability of mobile intelligent robots. Aiming at the problem that current 3D object detection is difficult to balance lightweight and accuracy, this paper presents a multimodal fusion object detection method, F-ResPoint, based on point cloud culling in vision frustum. F-ResPoint is a lightweight two-stage object detection method, in which the frustum point cloud generation algorithm based on the improved YOLOv5 is used first to obtain the point cloud containing the object information in the view frustum from the point cloud in the original field. Then, the point cloud detection network based on the Residual-SA module is utilized for detecting the three-dimensional (3D) object from point cloud in the view frustum and obtaining its position and actual size of the object in 3D space. Experimental results demonstrate that this method achieves high detection accuracy and maintains good real-time performance while remaining lightweight.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"90 \",\"pages\":\"Article 103135\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225001726\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225001726","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

精确、轻量化的三维目标检测对移动智能机器人的感知能力至关重要。针对当前三维目标检测难以兼顾轻量化和精度的问题,提出了一种基于视锥体点云剔除的多模态融合目标检测方法F-ResPoint。F-ResPoint是一种轻量级的两阶段目标检测方法,该方法首先使用基于改进的YOLOv5的视锥点云生成算法,从原场的点云中获取包含视锥内目标信息的点云。然后,利用基于残差sa模块的点云检测网络,对视域内的点云进行三维目标检测,得到目标在三维空间中的位置和实际尺寸。实验结果表明,该方法在保持轻量化的同时,具有较高的检测精度和实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
F-ResPoint: a multi-modal fusion object detection algorithm based on frustum culling
Accurate and lightweight 3D object detection is crucial for the perception ability of mobile intelligent robots. Aiming at the problem that current 3D object detection is difficult to balance lightweight and accuracy, this paper presents a multimodal fusion object detection method, F-ResPoint, based on point cloud culling in vision frustum. F-ResPoint is a lightweight two-stage object detection method, in which the frustum point cloud generation algorithm based on the improved YOLOv5 is used first to obtain the point cloud containing the object information in the view frustum from the point cloud in the original field. Then, the point cloud detection network based on the Residual-SA module is utilized for detecting the three-dimensional (3D) object from point cloud in the view frustum and obtaining its position and actual size of the object in 3D space. Experimental results demonstrate that this method achieves high detection accuracy and maintains good real-time performance while remaining lightweight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信