Teodoro Martín-Noguerol , Carolina Díaz-Angulo , Antonio Luna , Fermín Segovia , Manuel Gómez-Río , Juan M. Górriz
{"title":"基于图像的人工智能工具在周围神经评估中的应用:现状和整合策略","authors":"Teodoro Martín-Noguerol , Carolina Díaz-Angulo , Antonio Luna , Fermín Segovia , Manuel Gómez-Río , Juan M. Górriz","doi":"10.1016/j.ejrad.2025.112255","DOIUrl":null,"url":null,"abstract":"<div><div>Peripheral Nerves (PNs) are traditionally evaluated using US or MRI, allowing radiologists to identify and classify them as normal or pathological based on imaging findings, symptoms, and electrophysiological tests. However, the anatomical complexity of PNs, coupled with their proximity to surrounding structures like vessels and muscles, presents significant challenges. Advanced imaging techniques, including MR-neurography and Diffusion-Weighted Imaging (DWI) neurography, have shown promise but are hindered by steep learning curves, operator dependency, and limited accessibility. Discrepancies between imaging findings and patient symptoms further complicate the evaluation of PNs, particularly in cases where imaging appears normal despite clinical indications of pathology. Additionally, demographic and clinical factors such as age, sex, comorbidities, and physical activity influence PN health but remain unquantifiable with current imaging methods.</div><div>Artificial Intelligence (AI) solutions have emerged as a transformative tool in PN evaluation. AI-based algorithms offer the potential to transition from qualitative to quantitative assessments, enabling precise segmentation, characterization, and threshold determination to distinguish healthy from pathological nerves. These advances could improve diagnostic accuracy and treatment monitoring.</div><div>This review highlights the latest advances in AI applications for PN imaging, discussing their potential to overcome the current limitations and opportunities to improve their integration into routine radiological practice.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"190 ","pages":"Article 112255"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-based AI tools in peripheral nerves assessment: Current status and integration strategies − A narrative review\",\"authors\":\"Teodoro Martín-Noguerol , Carolina Díaz-Angulo , Antonio Luna , Fermín Segovia , Manuel Gómez-Río , Juan M. Górriz\",\"doi\":\"10.1016/j.ejrad.2025.112255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Peripheral Nerves (PNs) are traditionally evaluated using US or MRI, allowing radiologists to identify and classify them as normal or pathological based on imaging findings, symptoms, and electrophysiological tests. However, the anatomical complexity of PNs, coupled with their proximity to surrounding structures like vessels and muscles, presents significant challenges. Advanced imaging techniques, including MR-neurography and Diffusion-Weighted Imaging (DWI) neurography, have shown promise but are hindered by steep learning curves, operator dependency, and limited accessibility. Discrepancies between imaging findings and patient symptoms further complicate the evaluation of PNs, particularly in cases where imaging appears normal despite clinical indications of pathology. Additionally, demographic and clinical factors such as age, sex, comorbidities, and physical activity influence PN health but remain unquantifiable with current imaging methods.</div><div>Artificial Intelligence (AI) solutions have emerged as a transformative tool in PN evaluation. AI-based algorithms offer the potential to transition from qualitative to quantitative assessments, enabling precise segmentation, characterization, and threshold determination to distinguish healthy from pathological nerves. These advances could improve diagnostic accuracy and treatment monitoring.</div><div>This review highlights the latest advances in AI applications for PN imaging, discussing their potential to overcome the current limitations and opportunities to improve their integration into routine radiological practice.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"190 \",\"pages\":\"Article 112255\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X25003419\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25003419","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Image-based AI tools in peripheral nerves assessment: Current status and integration strategies − A narrative review
Peripheral Nerves (PNs) are traditionally evaluated using US or MRI, allowing radiologists to identify and classify them as normal or pathological based on imaging findings, symptoms, and electrophysiological tests. However, the anatomical complexity of PNs, coupled with their proximity to surrounding structures like vessels and muscles, presents significant challenges. Advanced imaging techniques, including MR-neurography and Diffusion-Weighted Imaging (DWI) neurography, have shown promise but are hindered by steep learning curves, operator dependency, and limited accessibility. Discrepancies between imaging findings and patient symptoms further complicate the evaluation of PNs, particularly in cases where imaging appears normal despite clinical indications of pathology. Additionally, demographic and clinical factors such as age, sex, comorbidities, and physical activity influence PN health but remain unquantifiable with current imaging methods.
Artificial Intelligence (AI) solutions have emerged as a transformative tool in PN evaluation. AI-based algorithms offer the potential to transition from qualitative to quantitative assessments, enabling precise segmentation, characterization, and threshold determination to distinguish healthy from pathological nerves. These advances could improve diagnostic accuracy and treatment monitoring.
This review highlights the latest advances in AI applications for PN imaging, discussing their potential to overcome the current limitations and opportunities to improve their integration into routine radiological practice.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.