用凸子集求解凸集的最优lp逼近

IF 1.3 2区 数学 Q1 MATHEMATICS
Zakaria Fattah , Ilias Ftouhi , Enrique Zuazua
{"title":"用凸子集求解凸集的最优lp逼近","authors":"Zakaria Fattah ,&nbsp;Ilias Ftouhi ,&nbsp;Enrique Zuazua","doi":"10.1016/j.na.2025.113866","DOIUrl":null,"url":null,"abstract":"<div><div>Given a convex set <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we consider the shape optimization problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the <span><math><mi>p</mi></math></span>-distance functional <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are the support functions of <span><math><mi>ω</mi></math></span> and the fixed container <span><math><mi>Ω</mi></math></span>, respectively.</div><div>We prove the existence of solutions and show that this minimization problem <span><math><mi>Γ</mi></math></span>-converges, when <span><math><mi>p</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, towards the problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the Hausdorff distance to the convex <span><math><mi>Ω</mi></math></span>.</div><div>In the planar case, we show that the free parts of the boundary of the optimal shapes, i.e., those that are in the interior of <span><math><mi>Ω</mi></math></span>, are given by polygonal lines.</div><div>Still in the 2D setting, from a computational perspective, the classical method based on optimizing Fourier coefficients of support functions is not efficient, as it is unable to efficiently capture the presence of segments on the boundary of optimal shapes. We subsequently propose a method combining Fourier analysis and a numerical scheme recently introduced in Bogosel (2023), allowing to obtain accurate results, as demonstrated through numerical experiments.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113866"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Lp-approximation of convex sets by convex subsets\",\"authors\":\"Zakaria Fattah ,&nbsp;Ilias Ftouhi ,&nbsp;Enrique Zuazua\",\"doi\":\"10.1016/j.na.2025.113866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a convex set <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we consider the shape optimization problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the <span><math><mi>p</mi></math></span>-distance functional <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are the support functions of <span><math><mi>ω</mi></math></span> and the fixed container <span><math><mi>Ω</mi></math></span>, respectively.</div><div>We prove the existence of solutions and show that this minimization problem <span><math><mi>Γ</mi></math></span>-converges, when <span><math><mi>p</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, towards the problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the Hausdorff distance to the convex <span><math><mi>Ω</mi></math></span>.</div><div>In the planar case, we show that the free parts of the boundary of the optimal shapes, i.e., those that are in the interior of <span><math><mi>Ω</mi></math></span>, are given by polygonal lines.</div><div>Still in the 2D setting, from a computational perspective, the classical method based on optimizing Fourier coefficients of support functions is not efficient, as it is unable to efficiently capture the presence of segments on the boundary of optimal shapes. We subsequently propose a method combining Fourier analysis and a numerical scheme recently introduced in Bogosel (2023), allowing to obtain accurate results, as demonstrated through numerical experiments.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113866\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001208\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001208","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定Rn的一个凸集Ω,考虑寻找给定测度的一个凸子集Ω∧Ω的形状优化问题,最小化p-距离泛函Jp(Ω)是∫Sn−1|hΩ−hΩ |pdHn−11p,其中1≤p<;∞,hΩ和hΩ分别是Ω和固定容器Ω的支持函数。我们证明了解的存在性,并证明了这个最小化问题Γ-converges,当p趋于+∞时,趋向于寻找给定度量的凸子集ω∧Ω的问题,最小化到凸的豪斯多夫距离Ω。在平面情况下,我们证明了最优形状边界的自由部分,即Ω内部的自由部分,是由多边形线给出的。仍然在二维环境下,从计算角度来看,基于优化支持函数傅立叶系数的经典方法效率不高,因为它无法有效地捕捉到最优形状边界上是否存在线段。随后,我们提出了一种将傅立叶分析和Bogosel(2023)最近引入的数值方案相结合的方法,可以通过数值实验获得准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Lp-approximation of convex sets by convex subsets
Given a convex set Ω of Rn, we consider the shape optimization problem of finding a convex subset ωΩ, of a given measure, minimizing the p-distance functional Jp(ω)Sn1|hΩhω|pdHn11p, where 1p< and hω and hΩ are the support functions of ω and the fixed container Ω, respectively.
We prove the existence of solutions and show that this minimization problem Γ-converges, when p tends to +, towards the problem of finding a convex subset ωΩ, of a given measure, minimizing the Hausdorff distance to the convex Ω.
In the planar case, we show that the free parts of the boundary of the optimal shapes, i.e., those that are in the interior of Ω, are given by polygonal lines.
Still in the 2D setting, from a computational perspective, the classical method based on optimizing Fourier coefficients of support functions is not efficient, as it is unable to efficiently capture the presence of segments on the boundary of optimal shapes. We subsequently propose a method combining Fourier analysis and a numerical scheme recently introduced in Bogosel (2023), allowing to obtain accurate results, as demonstrated through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信