{"title":"用凸子集求解凸集的最优lp逼近","authors":"Zakaria Fattah , Ilias Ftouhi , Enrique Zuazua","doi":"10.1016/j.na.2025.113866","DOIUrl":null,"url":null,"abstract":"<div><div>Given a convex set <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we consider the shape optimization problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the <span><math><mi>p</mi></math></span>-distance functional <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are the support functions of <span><math><mi>ω</mi></math></span> and the fixed container <span><math><mi>Ω</mi></math></span>, respectively.</div><div>We prove the existence of solutions and show that this minimization problem <span><math><mi>Γ</mi></math></span>-converges, when <span><math><mi>p</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, towards the problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the Hausdorff distance to the convex <span><math><mi>Ω</mi></math></span>.</div><div>In the planar case, we show that the free parts of the boundary of the optimal shapes, i.e., those that are in the interior of <span><math><mi>Ω</mi></math></span>, are given by polygonal lines.</div><div>Still in the 2D setting, from a computational perspective, the classical method based on optimizing Fourier coefficients of support functions is not efficient, as it is unable to efficiently capture the presence of segments on the boundary of optimal shapes. We subsequently propose a method combining Fourier analysis and a numerical scheme recently introduced in Bogosel (2023), allowing to obtain accurate results, as demonstrated through numerical experiments.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113866"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Lp-approximation of convex sets by convex subsets\",\"authors\":\"Zakaria Fattah , Ilias Ftouhi , Enrique Zuazua\",\"doi\":\"10.1016/j.na.2025.113866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a convex set <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we consider the shape optimization problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the <span><math><mi>p</mi></math></span>-distance functional <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mfenced><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are the support functions of <span><math><mi>ω</mi></math></span> and the fixed container <span><math><mi>Ω</mi></math></span>, respectively.</div><div>We prove the existence of solutions and show that this minimization problem <span><math><mi>Γ</mi></math></span>-converges, when <span><math><mi>p</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, towards the problem of finding a convex subset <span><math><mrow><mi>ω</mi><mo>⊂</mo><mi>Ω</mi></mrow></math></span>, of a given measure, minimizing the Hausdorff distance to the convex <span><math><mi>Ω</mi></math></span>.</div><div>In the planar case, we show that the free parts of the boundary of the optimal shapes, i.e., those that are in the interior of <span><math><mi>Ω</mi></math></span>, are given by polygonal lines.</div><div>Still in the 2D setting, from a computational perspective, the classical method based on optimizing Fourier coefficients of support functions is not efficient, as it is unable to efficiently capture the presence of segments on the boundary of optimal shapes. We subsequently propose a method combining Fourier analysis and a numerical scheme recently introduced in Bogosel (2023), allowing to obtain accurate results, as demonstrated through numerical experiments.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113866\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001208\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001208","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal Lp-approximation of convex sets by convex subsets
Given a convex set of , we consider the shape optimization problem of finding a convex subset , of a given measure, minimizing the -distance functional where and and are the support functions of and the fixed container , respectively.
We prove the existence of solutions and show that this minimization problem -converges, when tends to , towards the problem of finding a convex subset , of a given measure, minimizing the Hausdorff distance to the convex .
In the planar case, we show that the free parts of the boundary of the optimal shapes, i.e., those that are in the interior of , are given by polygonal lines.
Still in the 2D setting, from a computational perspective, the classical method based on optimizing Fourier coefficients of support functions is not efficient, as it is unable to efficiently capture the presence of segments on the boundary of optimal shapes. We subsequently propose a method combining Fourier analysis and a numerical scheme recently introduced in Bogosel (2023), allowing to obtain accurate results, as demonstrated through numerical experiments.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.