Jong-Hoon Kim , Hwa Lee , Kwang-Hee Son , Tae-Sook Jeong , Ho-Yong Park
{"title":"Arazyme通过调节基质金属蛋白酶和胶原合成来防止皮肤老化","authors":"Jong-Hoon Kim , Hwa Lee , Kwang-Hee Son , Tae-Sook Jeong , Ho-Yong Park","doi":"10.1016/j.enzmictec.2025.110695","DOIUrl":null,"url":null,"abstract":"<div><div>Arazyme, an enzyme derived from <em>Serratia proteamaculans</em>, has demonstrated efficacy in enhancing skin barrier function in studies involving skin cell treatments and topical application on animal skin. The objective of this study was to assess the anti-wrinkle and anti-aging effects of Arazyme in skin keratinocytes and fibroblasts subjected to ultraviolet B (UVB) radiation and oxidative stress. Keratinocytes (HaCaT cells) and fibroblasts (CCD-986sk) were exposed to UVB (15 mJ/cm²) radiation or oxidative stress induced by 2 mM 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), followed by treatment with Arazyme (0.1–0.5 μM) for 24 h. The effects of Arazyme were compared to those of individual treatments with papain, trypsin, or retinol, which served as reference compounds. Key parameters examined included the expression of matrix metalloproteinases (<em>MMP-1, MMP-3, and MMP-13</em>), collagen synthesis, and cellular senescence markers (<em>LMNB1, p16, p21</em>, and <em>p53</em>). Additionally, the impact of Arazyme on cellular signaling pathways, including ERK, JNK, and NF-κB, was assessed. Arazyme significantly suppressed UVB-induced expression of MMP-1, MMP-3, and MMP-13 in a dose-dependent manner in HaCaT cells compared to other treatments. In UVB-exposed fibroblasts, Arazyme reduced both mRNA and protein levels of MMPs, while also enhancing procollagen concentration and collagen gene expression. Furthermore, Arazyme inhibited the activation of ERK, JNK, and NF-κB signaling pathways in keratinocytes. In AAPH-stimulated HaCaT cells, Arazyme significantly attenuated the expression of senescence-related markers, including <em>LMNB1, p16, p21</em>, and <em>p53</em>, and decreased the proportion of senescence-positive cells in fibroblasts. Our in vitro findings suggest that Arazyme may help attenuate UVB- and oxidative stress-induced markers of skin aging, indicating its potential as a candidate for further investigation in anti-aging skincare research.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"190 ","pages":"Article 110695"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arazyme prevents skin aging through regulation of matrix metalloproteinase and collagen synthesis\",\"authors\":\"Jong-Hoon Kim , Hwa Lee , Kwang-Hee Son , Tae-Sook Jeong , Ho-Yong Park\",\"doi\":\"10.1016/j.enzmictec.2025.110695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arazyme, an enzyme derived from <em>Serratia proteamaculans</em>, has demonstrated efficacy in enhancing skin barrier function in studies involving skin cell treatments and topical application on animal skin. The objective of this study was to assess the anti-wrinkle and anti-aging effects of Arazyme in skin keratinocytes and fibroblasts subjected to ultraviolet B (UVB) radiation and oxidative stress. Keratinocytes (HaCaT cells) and fibroblasts (CCD-986sk) were exposed to UVB (15 mJ/cm²) radiation or oxidative stress induced by 2 mM 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), followed by treatment with Arazyme (0.1–0.5 μM) for 24 h. The effects of Arazyme were compared to those of individual treatments with papain, trypsin, or retinol, which served as reference compounds. Key parameters examined included the expression of matrix metalloproteinases (<em>MMP-1, MMP-3, and MMP-13</em>), collagen synthesis, and cellular senescence markers (<em>LMNB1, p16, p21</em>, and <em>p53</em>). Additionally, the impact of Arazyme on cellular signaling pathways, including ERK, JNK, and NF-κB, was assessed. Arazyme significantly suppressed UVB-induced expression of MMP-1, MMP-3, and MMP-13 in a dose-dependent manner in HaCaT cells compared to other treatments. In UVB-exposed fibroblasts, Arazyme reduced both mRNA and protein levels of MMPs, while also enhancing procollagen concentration and collagen gene expression. Furthermore, Arazyme inhibited the activation of ERK, JNK, and NF-κB signaling pathways in keratinocytes. In AAPH-stimulated HaCaT cells, Arazyme significantly attenuated the expression of senescence-related markers, including <em>LMNB1, p16, p21</em>, and <em>p53</em>, and decreased the proportion of senescence-positive cells in fibroblasts. Our in vitro findings suggest that Arazyme may help attenuate UVB- and oxidative stress-induced markers of skin aging, indicating its potential as a candidate for further investigation in anti-aging skincare research.</div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"190 \",\"pages\":\"Article 110695\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925001152\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Arazyme prevents skin aging through regulation of matrix metalloproteinase and collagen synthesis
Arazyme, an enzyme derived from Serratia proteamaculans, has demonstrated efficacy in enhancing skin barrier function in studies involving skin cell treatments and topical application on animal skin. The objective of this study was to assess the anti-wrinkle and anti-aging effects of Arazyme in skin keratinocytes and fibroblasts subjected to ultraviolet B (UVB) radiation and oxidative stress. Keratinocytes (HaCaT cells) and fibroblasts (CCD-986sk) were exposed to UVB (15 mJ/cm²) radiation or oxidative stress induced by 2 mM 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), followed by treatment with Arazyme (0.1–0.5 μM) for 24 h. The effects of Arazyme were compared to those of individual treatments with papain, trypsin, or retinol, which served as reference compounds. Key parameters examined included the expression of matrix metalloproteinases (MMP-1, MMP-3, and MMP-13), collagen synthesis, and cellular senescence markers (LMNB1, p16, p21, and p53). Additionally, the impact of Arazyme on cellular signaling pathways, including ERK, JNK, and NF-κB, was assessed. Arazyme significantly suppressed UVB-induced expression of MMP-1, MMP-3, and MMP-13 in a dose-dependent manner in HaCaT cells compared to other treatments. In UVB-exposed fibroblasts, Arazyme reduced both mRNA and protein levels of MMPs, while also enhancing procollagen concentration and collagen gene expression. Furthermore, Arazyme inhibited the activation of ERK, JNK, and NF-κB signaling pathways in keratinocytes. In AAPH-stimulated HaCaT cells, Arazyme significantly attenuated the expression of senescence-related markers, including LMNB1, p16, p21, and p53, and decreased the proportion of senescence-positive cells in fibroblasts. Our in vitro findings suggest that Arazyme may help attenuate UVB- and oxidative stress-induced markers of skin aging, indicating its potential as a candidate for further investigation in anti-aging skincare research.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.