非光滑Welander海洋对流模型的poincar映射和极限环研究

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Yagor Romano Carvalho , Luiz F.S. Gouveia , Richard McGehee
{"title":"非光滑Welander海洋对流模型的poincar<s:1>映射和极限环研究","authors":"Yagor Romano Carvalho ,&nbsp;Luiz F.S. Gouveia ,&nbsp;Richard McGehee","doi":"10.1016/j.physd.2025.134780","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, our primary goal is to study the Poincaré Map and the existence of limit cycles for the Welander model that describes ocean convection. Welander developed two versions of his model, one with a smooth transition between convective states, and one with an abrupt non-smooth change. Our focus in this paper is to study the non-smooth model. Approaching through the Poincaré Map, we demonstrate analytically the bifurcation of a unique stable crossing limit cycle surrounding an escaping segment. In addition, we demonstrate that there is no sliding limit cycle.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134780"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Poincaré Map and limit cycles for non-smooth Welander’s Ocean Convection Model\",\"authors\":\"Yagor Romano Carvalho ,&nbsp;Luiz F.S. Gouveia ,&nbsp;Richard McGehee\",\"doi\":\"10.1016/j.physd.2025.134780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, our primary goal is to study the Poincaré Map and the existence of limit cycles for the Welander model that describes ocean convection. Welander developed two versions of his model, one with a smooth transition between convective states, and one with an abrupt non-smooth change. Our focus in this paper is to study the non-smooth model. Approaching through the Poincaré Map, we demonstrate analytically the bifurcation of a unique stable crossing limit cycle surrounding an escaping segment. In addition, we demonstrate that there is no sliding limit cycle.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134780\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892500257X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500257X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们的主要目标是研究描述海洋对流的韦兰德模型的庞加莱图和极限环的存在性。韦兰德提出了他的模型的两个版本,一个是对流状态之间的平滑过渡,另一个是突然的非平滑变化。本文的重点是研究非光滑模型。通过poincar映射,我们分析地证明了围绕转义段的唯一稳定交叉极限环的分岔。此外,我们证明了不存在滑动极限环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Poincaré Map and limit cycles for non-smooth Welander’s Ocean Convection Model
In this work, our primary goal is to study the Poincaré Map and the existence of limit cycles for the Welander model that describes ocean convection. Welander developed two versions of his model, one with a smooth transition between convective states, and one with an abrupt non-smooth change. Our focus in this paper is to study the non-smooth model. Approaching through the Poincaré Map, we demonstrate analytically the bifurcation of a unique stable crossing limit cycle surrounding an escaping segment. In addition, we demonstrate that there is no sliding limit cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信