G. Tapia-Labra, M. Hernández-Sánchez, J.A. Méndez-Bermúdez
{"title":"多层有向随机网络:光谱特性的缩放","authors":"G. Tapia-Labra, M. Hernández-Sánchez, J.A. Méndez-Bermúdez","doi":"10.1016/j.chaos.2025.116695","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the wide presence of multilayer networks in both natural and human-made systems, within a random matrix theory (RMT) approach, in this study we compute eigenfunction and spectral properties of multilayer directed random networks (MDRNs) in two setups composed by <span><math><mi>M</mi></math></span> layers of size <span><math><mi>N</mi></math></span>: A line and a complete graph (node-aligned multiplex network). First, we numerically demonstrate that the normalized localization length <span><math><mi>β</mi></math></span> of the eigenfunctions of MDRNs follows a simple scaling law given by <span><math><mrow><mi>β</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is a nontrivial function of <span><math><mi>M</mi></math></span>, <span><math><mi>N</mi></math></span>, and number of intra- and inter-layer edges. Then, we show that other eigenfunction and spectral RMT measures (the inverse participation ratio of eigenfunctions, the ratio between nearest- and next-to-nearest- neighbor eigenvalue distances, and the ratio between consecutive singular-value spacings) of MDRNs also scale with <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We validate our results on real-world networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116695"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer directed random networks: Scaling of spectral properties\",\"authors\":\"G. Tapia-Labra, M. Hernández-Sánchez, J.A. Méndez-Bermúdez\",\"doi\":\"10.1016/j.chaos.2025.116695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the wide presence of multilayer networks in both natural and human-made systems, within a random matrix theory (RMT) approach, in this study we compute eigenfunction and spectral properties of multilayer directed random networks (MDRNs) in two setups composed by <span><math><mi>M</mi></math></span> layers of size <span><math><mi>N</mi></math></span>: A line and a complete graph (node-aligned multiplex network). First, we numerically demonstrate that the normalized localization length <span><math><mi>β</mi></math></span> of the eigenfunctions of MDRNs follows a simple scaling law given by <span><math><mrow><mi>β</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is a nontrivial function of <span><math><mi>M</mi></math></span>, <span><math><mi>N</mi></math></span>, and number of intra- and inter-layer edges. Then, we show that other eigenfunction and spectral RMT measures (the inverse participation ratio of eigenfunctions, the ratio between nearest- and next-to-nearest- neighbor eigenvalue distances, and the ratio between consecutive singular-value spacings) of MDRNs also scale with <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We validate our results on real-world networks.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116695\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007088\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007088","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multilayer directed random networks: Scaling of spectral properties
Motivated by the wide presence of multilayer networks in both natural and human-made systems, within a random matrix theory (RMT) approach, in this study we compute eigenfunction and spectral properties of multilayer directed random networks (MDRNs) in two setups composed by layers of size : A line and a complete graph (node-aligned multiplex network). First, we numerically demonstrate that the normalized localization length of the eigenfunctions of MDRNs follows a simple scaling law given by , where is a nontrivial function of , , and number of intra- and inter-layer edges. Then, we show that other eigenfunction and spectral RMT measures (the inverse participation ratio of eigenfunctions, the ratio between nearest- and next-to-nearest- neighbor eigenvalue distances, and the ratio between consecutive singular-value spacings) of MDRNs also scale with . We validate our results on real-world networks.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.