多层有向随机网络:光谱特性的缩放

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
G. Tapia-Labra, M. Hernández-Sánchez, J.A. Méndez-Bermúdez
{"title":"多层有向随机网络:光谱特性的缩放","authors":"G. Tapia-Labra,&nbsp;M. Hernández-Sánchez,&nbsp;J.A. Méndez-Bermúdez","doi":"10.1016/j.chaos.2025.116695","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the wide presence of multilayer networks in both natural and human-made systems, within a random matrix theory (RMT) approach, in this study we compute eigenfunction and spectral properties of multilayer directed random networks (MDRNs) in two setups composed by <span><math><mi>M</mi></math></span> layers of size <span><math><mi>N</mi></math></span>: A line and a complete graph (node-aligned multiplex network). First, we numerically demonstrate that the normalized localization length <span><math><mi>β</mi></math></span> of the eigenfunctions of MDRNs follows a simple scaling law given by <span><math><mrow><mi>β</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is a nontrivial function of <span><math><mi>M</mi></math></span>, <span><math><mi>N</mi></math></span>, and number of intra- and inter-layer edges. Then, we show that other eigenfunction and spectral RMT measures (the inverse participation ratio of eigenfunctions, the ratio between nearest- and next-to-nearest- neighbor eigenvalue distances, and the ratio between consecutive singular-value spacings) of MDRNs also scale with <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We validate our results on real-world networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116695"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer directed random networks: Scaling of spectral properties\",\"authors\":\"G. Tapia-Labra,&nbsp;M. Hernández-Sánchez,&nbsp;J.A. Méndez-Bermúdez\",\"doi\":\"10.1016/j.chaos.2025.116695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the wide presence of multilayer networks in both natural and human-made systems, within a random matrix theory (RMT) approach, in this study we compute eigenfunction and spectral properties of multilayer directed random networks (MDRNs) in two setups composed by <span><math><mi>M</mi></math></span> layers of size <span><math><mi>N</mi></math></span>: A line and a complete graph (node-aligned multiplex network). First, we numerically demonstrate that the normalized localization length <span><math><mi>β</mi></math></span> of the eigenfunctions of MDRNs follows a simple scaling law given by <span><math><mrow><mi>β</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is a nontrivial function of <span><math><mi>M</mi></math></span>, <span><math><mi>N</mi></math></span>, and number of intra- and inter-layer edges. Then, we show that other eigenfunction and spectral RMT measures (the inverse participation ratio of eigenfunctions, the ratio between nearest- and next-to-nearest- neighbor eigenvalue distances, and the ratio between consecutive singular-value spacings) of MDRNs also scale with <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. We validate our results on real-world networks.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116695\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007088\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007088","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于在自然和人造系统中广泛存在多层网络,在随机矩阵理论(RMT)方法的激励下,在本研究中,我们在由M层组成的两个设置中计算多层有向随机网络(mdrn)的特征函数和频谱特性,这些层的大小为N:一条线和一个完整的图(节点对齐的多路网络)。首先,我们在数值上证明了mdrn特征函数的归一化定位长度β遵循由β=x∗/(1+x∗)给出的简单标度律,其中x∗是M, N以及层内和层间边数的非平凡函数。然后,我们证明了mdrn的其他特征函数和谱RMT度量(特征函数的逆参与比,最近邻和最近邻特征值距离之间的比率,以及连续奇异值间隔之间的比率)也与x∗成比例。我们在现实世界的网络上验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilayer directed random networks: Scaling of spectral properties
Motivated by the wide presence of multilayer networks in both natural and human-made systems, within a random matrix theory (RMT) approach, in this study we compute eigenfunction and spectral properties of multilayer directed random networks (MDRNs) in two setups composed by M layers of size N: A line and a complete graph (node-aligned multiplex network). First, we numerically demonstrate that the normalized localization length β of the eigenfunctions of MDRNs follows a simple scaling law given by β=x/(1+x), where x is a nontrivial function of M, N, and number of intra- and inter-layer edges. Then, we show that other eigenfunction and spectral RMT measures (the inverse participation ratio of eigenfunctions, the ratio between nearest- and next-to-nearest- neighbor eigenvalue distances, and the ratio between consecutive singular-value spacings) of MDRNs also scale with x. We validate our results on real-world networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信