Nianhang Chen, Zhennan Jiang, Zhekai Xie, Su Zhou, Tao Zeng, Siqi Jiang, Ying Zheng, Yuan Yuan and Ruibo Wu*,
{"title":"一种有效的UGTs催化功能预测计算策略","authors":"Nianhang Chen, Zhennan Jiang, Zhekai Xie, Su Zhou, Tao Zeng, Siqi Jiang, Ying Zheng, Yuan Yuan and Ruibo Wu*, ","doi":"10.1021/acssynbio.4c0088610.1021/acssynbio.4c00886","DOIUrl":null,"url":null,"abstract":"<p >The GT-B type glycosyltransferases play a crucial post-modification role in synthesizing natural products, such as triterpenoid and steroidal saponins, renowned for their diverse pharmacological activities. Despite phylogenetic analysis aiding in enzyme family classification, distinguishing substrate specificity between triterpenoid and steroidal saponins, with their highly similar cyclic scaffolds, remains a formidable challenge. Our studies unveil the potential transport tunnels for the glycosyl donor and acceptor in PpUGT73CR1, by molecular dynamics simulations. This revelation leads to a plausible substrate transport mechanism, highlighting the regulatory role of the N-terminal domain (NTD) in glycosyl acceptor binding and transport. Inspired by these structural and mechanistic insights, we further analyze the binding pockets of 44 plant-derived UGTs known to glycosylate triterpenes and sterols. Notably, sterol UGTs are found to harbor aromatic and hydrophobic residues with polar residues typically present at the bottom of the active pocket. Drawing inspiration from the substrate binding and product release mechanism revealed through structure-based molecular modeling, we devised a fast sequence-based method for classifying UGTs using the pre-trained ESM2 protein model. This method involved extracting the NTD features of UGTs and performing PCA clustering analysis, enabling accurate identification of enzyme function, and even differentiation of substrate specificity/promiscuity between structurally similar triterpenoid and steroidal substrates, which is further validated by experiments. This work not only deepens our understanding of substrate binding mechanisms but also provides an effective computational protocol for predicting the catalytic function of unknown UGTs.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 6","pages":"2064–2080 2064–2080"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Computational Strategy for UGTs Catalytic Function Prediction\",\"authors\":\"Nianhang Chen, Zhennan Jiang, Zhekai Xie, Su Zhou, Tao Zeng, Siqi Jiang, Ying Zheng, Yuan Yuan and Ruibo Wu*, \",\"doi\":\"10.1021/acssynbio.4c0088610.1021/acssynbio.4c00886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The GT-B type glycosyltransferases play a crucial post-modification role in synthesizing natural products, such as triterpenoid and steroidal saponins, renowned for their diverse pharmacological activities. Despite phylogenetic analysis aiding in enzyme family classification, distinguishing substrate specificity between triterpenoid and steroidal saponins, with their highly similar cyclic scaffolds, remains a formidable challenge. Our studies unveil the potential transport tunnels for the glycosyl donor and acceptor in PpUGT73CR1, by molecular dynamics simulations. This revelation leads to a plausible substrate transport mechanism, highlighting the regulatory role of the N-terminal domain (NTD) in glycosyl acceptor binding and transport. Inspired by these structural and mechanistic insights, we further analyze the binding pockets of 44 plant-derived UGTs known to glycosylate triterpenes and sterols. Notably, sterol UGTs are found to harbor aromatic and hydrophobic residues with polar residues typically present at the bottom of the active pocket. Drawing inspiration from the substrate binding and product release mechanism revealed through structure-based molecular modeling, we devised a fast sequence-based method for classifying UGTs using the pre-trained ESM2 protein model. This method involved extracting the NTD features of UGTs and performing PCA clustering analysis, enabling accurate identification of enzyme function, and even differentiation of substrate specificity/promiscuity between structurally similar triterpenoid and steroidal substrates, which is further validated by experiments. This work not only deepens our understanding of substrate binding mechanisms but also provides an effective computational protocol for predicting the catalytic function of unknown UGTs.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"14 6\",\"pages\":\"2064–2080 2064–2080\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.4c00886\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00886","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An Effective Computational Strategy for UGTs Catalytic Function Prediction
The GT-B type glycosyltransferases play a crucial post-modification role in synthesizing natural products, such as triterpenoid and steroidal saponins, renowned for their diverse pharmacological activities. Despite phylogenetic analysis aiding in enzyme family classification, distinguishing substrate specificity between triterpenoid and steroidal saponins, with their highly similar cyclic scaffolds, remains a formidable challenge. Our studies unveil the potential transport tunnels for the glycosyl donor and acceptor in PpUGT73CR1, by molecular dynamics simulations. This revelation leads to a plausible substrate transport mechanism, highlighting the regulatory role of the N-terminal domain (NTD) in glycosyl acceptor binding and transport. Inspired by these structural and mechanistic insights, we further analyze the binding pockets of 44 plant-derived UGTs known to glycosylate triterpenes and sterols. Notably, sterol UGTs are found to harbor aromatic and hydrophobic residues with polar residues typically present at the bottom of the active pocket. Drawing inspiration from the substrate binding and product release mechanism revealed through structure-based molecular modeling, we devised a fast sequence-based method for classifying UGTs using the pre-trained ESM2 protein model. This method involved extracting the NTD features of UGTs and performing PCA clustering analysis, enabling accurate identification of enzyme function, and even differentiation of substrate specificity/promiscuity between structurally similar triterpenoid and steroidal substrates, which is further validated by experiments. This work not only deepens our understanding of substrate binding mechanisms but also provides an effective computational protocol for predicting the catalytic function of unknown UGTs.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.