Thomas E. Gorochowski*, Michael A. Brockhurst, Francesca Ceroni, Yuka W. Iwasaki and Nozomu Yachie,
{"title":"日本-英国合成生物学会议,春季2025:加强与工程生物学的全球联系","authors":"Thomas E. Gorochowski*, Michael A. Brockhurst, Francesca Ceroni, Yuka W. Iwasaki and Nozomu Yachie, ","doi":"10.1021/acssynbio.5c0023210.1021/acssynbio.5c00232","DOIUrl":null,"url":null,"abstract":"<p >Both Japan and the UK have recognized the growing importance of synthetic and engineering biology for transforming life science research and transitioning toward a sustainable biobased economy. Such a shift will require extensive international cooperation and collaboration. In this viewpoint, we provide a summary of the recent “Japan-UK Synthetic Biology Conference, Spring 2025” that aimed to facilitate new links between researchers across the broad field of synthetic biology. We cover the core scientific topics discussed, distill some of the emerging trends, and outline the remaining challenges that are hampering progress. We end by highlighting some of the ways in which international collaborations may help address these issues through a combination of sharing expertise, national infrastructures, and aligned funding.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 6","pages":"1873–1878 1873–1878"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.5c00232","citationCount":"0","resultStr":"{\"title\":\"The Japan-UK Synthetic Biology Conference, Spring 2025: Strengthening Global Links to Engineer Biology\",\"authors\":\"Thomas E. Gorochowski*, Michael A. Brockhurst, Francesca Ceroni, Yuka W. Iwasaki and Nozomu Yachie, \",\"doi\":\"10.1021/acssynbio.5c0023210.1021/acssynbio.5c00232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Both Japan and the UK have recognized the growing importance of synthetic and engineering biology for transforming life science research and transitioning toward a sustainable biobased economy. Such a shift will require extensive international cooperation and collaboration. In this viewpoint, we provide a summary of the recent “Japan-UK Synthetic Biology Conference, Spring 2025” that aimed to facilitate new links between researchers across the broad field of synthetic biology. We cover the core scientific topics discussed, distill some of the emerging trends, and outline the remaining challenges that are hampering progress. We end by highlighting some of the ways in which international collaborations may help address these issues through a combination of sharing expertise, national infrastructures, and aligned funding.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"14 6\",\"pages\":\"1873–1878 1873–1878\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.5c00232\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.5c00232\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00232","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The Japan-UK Synthetic Biology Conference, Spring 2025: Strengthening Global Links to Engineer Biology
Both Japan and the UK have recognized the growing importance of synthetic and engineering biology for transforming life science research and transitioning toward a sustainable biobased economy. Such a shift will require extensive international cooperation and collaboration. In this viewpoint, we provide a summary of the recent “Japan-UK Synthetic Biology Conference, Spring 2025” that aimed to facilitate new links between researchers across the broad field of synthetic biology. We cover the core scientific topics discussed, distill some of the emerging trends, and outline the remaining challenges that are hampering progress. We end by highlighting some of the ways in which international collaborations may help address these issues through a combination of sharing expertise, national infrastructures, and aligned funding.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.