scExtract:利用大型语言模型进行全自动单细胞RNA-seq数据注释和预先通知的多数据集集成

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuxuan Wu, Fuchou Tang
{"title":"scExtract:利用大型语言模型进行全自动单细胞RNA-seq数据注释和预先通知的多数据集集成","authors":"Yuxuan Wu, Fuchou Tang","doi":"10.1186/s13059-025-03639-x","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing has revolutionized cellular heterogeneity research, but analyzing the abundance of unannotated public datasets remains challenging. We present scExtract, a framework leveraging large language models to automate scRNA-seq data analysis from preprocessing to annotation and integration. scExtract extracts information from research articles to guide data processing, outperforming existing reference transfer methods in benchmarks. We introduce scanorama-prior and cellhint-prior, which incorporate prior annotation information for improved batch correction while preserving biological diversities. We demonstrate scExtract’s utility by integrating 14 datasets to create a comprehensive human skin atlas of 440,000 cells. ","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"40 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scExtract: leveraging large language models for fully automated single-cell RNA-seq data annotation and prior-informed multi-dataset integration\",\"authors\":\"Yuxuan Wu, Fuchou Tang\",\"doi\":\"10.1186/s13059-025-03639-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing has revolutionized cellular heterogeneity research, but analyzing the abundance of unannotated public datasets remains challenging. We present scExtract, a framework leveraging large language models to automate scRNA-seq data analysis from preprocessing to annotation and integration. scExtract extracts information from research articles to guide data processing, outperforming existing reference transfer methods in benchmarks. We introduce scanorama-prior and cellhint-prior, which incorporate prior annotation information for improved batch correction while preserving biological diversities. We demonstrate scExtract’s utility by integrating 14 datasets to create a comprehensive human skin atlas of 440,000 cells. \",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03639-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03639-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞RNA测序已经彻底改变了细胞异质性研究,但分析大量未注释的公共数据集仍然具有挑战性。我们提出了scExtract,一个利用大型语言模型来自动化scRNA-seq数据分析的框架,从预处理到注释和集成。scExtract从研究文章中提取信息以指导数据处理,在基准测试中优于现有的参考传递方法。我们引入了scanorma -prior和cellhint-prior,它们结合了先前的注释信息,以提高批量校正,同时保持生物多样性。我们通过整合14个数据集来创建一个包含44万个细胞的全面人体皮肤图谱来展示scExtract的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scExtract: leveraging large language models for fully automated single-cell RNA-seq data annotation and prior-informed multi-dataset integration
Single-cell RNA sequencing has revolutionized cellular heterogeneity research, but analyzing the abundance of unannotated public datasets remains challenging. We present scExtract, a framework leveraging large language models to automate scRNA-seq data analysis from preprocessing to annotation and integration. scExtract extracts information from research articles to guide data processing, outperforming existing reference transfer methods in benchmarks. We introduce scanorama-prior and cellhint-prior, which incorporate prior annotation information for improved batch correction while preserving biological diversities. We demonstrate scExtract’s utility by integrating 14 datasets to create a comprehensive human skin atlas of 440,000 cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信