Daniele Amparore, Alberto Piana, Andrea Simeri, Vincenzo Pezzi, Michele DI Dio, Cristian Fiori, Gianluigi Greco, Francesco Porpiglia
{"title":"从计划到预后:用人工智能预测微创肾部分切除术后的肾功能。","authors":"Daniele Amparore, Alberto Piana, Andrea Simeri, Vincenzo Pezzi, Michele DI Dio, Cristian Fiori, Gianluigi Greco, Francesco Porpiglia","doi":"10.23736/S2724-6051.25.06520-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m<sup>2</sup>, and a strong correlation with observed outcomes (r=0.904, P<10<sup>-42</sup>). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.</p>","PeriodicalId":53228,"journal":{"name":"Minerva Urology and Nephrology","volume":"77 3","pages":"401-407"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From planning to prognosis: predicting renal function after minimally-invasive partial nephrectomy with artificial intelligence.\",\"authors\":\"Daniele Amparore, Alberto Piana, Andrea Simeri, Vincenzo Pezzi, Michele DI Dio, Cristian Fiori, Gianluigi Greco, Francesco Porpiglia\",\"doi\":\"10.23736/S2724-6051.25.06520-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m<sup>2</sup>, and a strong correlation with observed outcomes (r=0.904, P<10<sup>-42</sup>). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.</p>\",\"PeriodicalId\":53228,\"journal\":{\"name\":\"Minerva Urology and Nephrology\",\"volume\":\"77 3\",\"pages\":\"401-407\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerva Urology and Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23736/S2724-6051.25.06520-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S2724-6051.25.06520-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种机器学习模型来预测微创部分肾切除术后肾功能下降。该模型使用2015年至2023年期间接受治疗的556例患者的数据集,将患者、肿瘤和术中手术变量(包括夹紧策略、切除技术和再缝合类型)纳入其中,以估计术后3个月的eGFR下降。随机森林回归模型优于其他模型,预测准确率为89.29%,平均绝对误差为8.09 mL/min/1.73 m2,与观察结果有很强的相关性(r=0.904, p = 42)。这些发现支持人工智能在保留肾单元手术中用于个性化手术计划和功能结果预测。
From planning to prognosis: predicting renal function after minimally-invasive partial nephrectomy with artificial intelligence.
This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m2, and a strong correlation with observed outcomes (r=0.904, P<10-42). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.