MHAHF-UNet:用于颈动脉分割的多尺度混合注意层次融合网络。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Changshuo Jiang, Lin Gao, Wei Li, Maoyang Zou, Qingxiao Zheng, Xuhua Qiao
{"title":"MHAHF-UNet:用于颈动脉分割的多尺度混合注意层次融合网络。","authors":"Changshuo Jiang, Lin Gao, Wei Li, Maoyang Zou, Qingxiao Zheng, Xuhua Qiao","doi":"10.1007/s11548-025-03449-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Carotid plaque is an early manifestation of carotid atherosclerosis, and its accurate segmentation helps to assess cardiovascular disease risk. However, existing carotid artery segmentation algorithms are difficult to accurately capture the structural features of morphologically diverse plaques and lack effective utilization of multilayer features.</p><p><strong>Methods: </strong>In order to solve the above problems, this paper proposes a multi-scale hybrid attention hierarchical fusion U-network structure (MHAHF-UNet) for segmenting ambiguous plaques in carotid artery images in order to improve the segmentation accuracy for complex structured images. The structure firstly introduces the median-enhanced orthogonal convolution module (MEOConv), which not only effectively suppresses the noise interference in ultrasound images, but also maintains the ability to perceive multi-scale features by combining the median-enhanced ternary channel mechanism and the depth-orthogonal convolution space mechanism. Secondly, it adopts the multi-fusion group convolutional gating module, which realizes the effective integration of shallow detailed features and deep semantic features through the adaptive control strategy of group convolution, and is able to flexibly regulate the transfer weights of features at different levels.</p><p><strong>Results: </strong>Experiments show that the MHAHF-UNet model achieves a Dice coefficient of <math><mrow><mn>82.46</mn> <mo>±</mo> <mn>0.31</mn> <mo>%</mo></mrow> </math> and an IOU of <math><mrow><mn>71.45</mn> <mo>±</mo> <mn>0.37</mn> <mo>%</mo></mrow> </math> in the carotid artery segmentation task.</p><p><strong>Conclusion: </strong>The model is expected to provide strong support for the prevention and treatment of cardiovascular diseases.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHAHF-UNet: a multi-scale hybrid attention hierarchy fusion network for carotid artery segmentation.\",\"authors\":\"Changshuo Jiang, Lin Gao, Wei Li, Maoyang Zou, Qingxiao Zheng, Xuhua Qiao\",\"doi\":\"10.1007/s11548-025-03449-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Carotid plaque is an early manifestation of carotid atherosclerosis, and its accurate segmentation helps to assess cardiovascular disease risk. However, existing carotid artery segmentation algorithms are difficult to accurately capture the structural features of morphologically diverse plaques and lack effective utilization of multilayer features.</p><p><strong>Methods: </strong>In order to solve the above problems, this paper proposes a multi-scale hybrid attention hierarchical fusion U-network structure (MHAHF-UNet) for segmenting ambiguous plaques in carotid artery images in order to improve the segmentation accuracy for complex structured images. The structure firstly introduces the median-enhanced orthogonal convolution module (MEOConv), which not only effectively suppresses the noise interference in ultrasound images, but also maintains the ability to perceive multi-scale features by combining the median-enhanced ternary channel mechanism and the depth-orthogonal convolution space mechanism. Secondly, it adopts the multi-fusion group convolutional gating module, which realizes the effective integration of shallow detailed features and deep semantic features through the adaptive control strategy of group convolution, and is able to flexibly regulate the transfer weights of features at different levels.</p><p><strong>Results: </strong>Experiments show that the MHAHF-UNet model achieves a Dice coefficient of <math><mrow><mn>82.46</mn> <mo>±</mo> <mn>0.31</mn> <mo>%</mo></mrow> </math> and an IOU of <math><mrow><mn>71.45</mn> <mo>±</mo> <mn>0.37</mn> <mo>%</mo></mrow> </math> in the carotid artery segmentation task.</p><p><strong>Conclusion: </strong>The model is expected to provide strong support for the prevention and treatment of cardiovascular diseases.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03449-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03449-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:颈动脉斑块是颈动脉粥样硬化的早期表现,其准确分割有助于评估心血管疾病的风险。然而,现有的颈动脉分割算法难以准确捕捉形态多样斑块的结构特征,缺乏对多层特征的有效利用。方法:针对上述问题,本文提出了一种多尺度混合关注层次融合u -网络结构(MHAHF-UNet)用于分割颈动脉图像中的模糊斑块,以提高对复杂结构图像的分割精度。该结构首先引入了中值增强正交卷积模块(MEOConv),该模块结合中值增强三元通道机制和深度正交卷积空间机制,不仅有效抑制超声图像中的噪声干扰,而且保持了对多尺度特征的感知能力。其次,采用多融合群卷积门控模块,通过群卷积自适应控制策略实现浅层细节特征与深层语义特征的有效融合,并能灵活调节不同层次特征的传递权值。结果:实验表明,MHAHF-UNet模型在颈动脉分割任务中的Dice系数为82.46±0.31%,IOU为71.45±0.37%。结论:该模型有望为心血管疾病的防治提供有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MHAHF-UNet: a multi-scale hybrid attention hierarchy fusion network for carotid artery segmentation.

Purpose: Carotid plaque is an early manifestation of carotid atherosclerosis, and its accurate segmentation helps to assess cardiovascular disease risk. However, existing carotid artery segmentation algorithms are difficult to accurately capture the structural features of morphologically diverse plaques and lack effective utilization of multilayer features.

Methods: In order to solve the above problems, this paper proposes a multi-scale hybrid attention hierarchical fusion U-network structure (MHAHF-UNet) for segmenting ambiguous plaques in carotid artery images in order to improve the segmentation accuracy for complex structured images. The structure firstly introduces the median-enhanced orthogonal convolution module (MEOConv), which not only effectively suppresses the noise interference in ultrasound images, but also maintains the ability to perceive multi-scale features by combining the median-enhanced ternary channel mechanism and the depth-orthogonal convolution space mechanism. Secondly, it adopts the multi-fusion group convolutional gating module, which realizes the effective integration of shallow detailed features and deep semantic features through the adaptive control strategy of group convolution, and is able to flexibly regulate the transfer weights of features at different levels.

Results: Experiments show that the MHAHF-UNet model achieves a Dice coefficient of 82.46 ± 0.31 % and an IOU of 71.45 ± 0.37 % in the carotid artery segmentation task.

Conclusion: The model is expected to provide strong support for the prevention and treatment of cardiovascular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信