Wen-Jing Wu, Kan Wang, Yang Vivian Yang, Xiaoning Yang
{"title":"基于机器学习算法和分子对接的结直肠癌神经元突触相关特征识别和潜在治疗药物。","authors":"Wen-Jing Wu, Kan Wang, Yang Vivian Yang, Xiaoning Yang","doi":"10.21037/tcr-24-1988","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nervous system-cancer interactions can regulate tumorigenesis, invasion, and metastasis. However, specific biomarkers for targeting neuron synapse in colorectal cancer (CRC) remain unexplored. This study aims to develop a neuronal synapse-related signature (NSRS) to predict survival in CRC patients, identify potential therapeutic drugs, and explore its clinical applications.</p><p><strong>Methods: </strong>We collected neuronal synapse genes (NSGs) from the Molecular Signatures Database (MSigDB) and published mass spectrometry data. Using weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator Cox regression (LASSO-Cox), we identified prognostic NSGs and constructed a NSRS through multivariate Cox regression. Functional enrichment analysis revealed the molecular characteristics of NSRS subgroups. Additionally, xCell and ESTIMATE algorithms quantified the abundance of 54 cell subtypes and assessed the tumor immune microenvironment (TIME) of the two NSRS subgroups. Finally, drug prediction and molecular docking identified candidate drugs with therapeutic potential.</p><p><strong>Results: </strong>Seven key prognostic NSGs were identified, and an independent, stable NSRS model was constructed. Kaplan-Meier survival curves indicated that the high NSRS group had poorer outcomes (log-rank test, P<0.05). Functional enrichment analysis revealed significant enrichment of epithelial-mesenchymal transition, hypoxia, and inflammation features in the high NSRS group. xCell and ESTIMATE analyses showed a more complex TIME and lower tumor purity in the high NSRS group, highlighting the role of neuro-tumor interactions in CRC. Drug prediction and molecular docking suggested alprostadil, dihydroergocristine, and nocodazole as candidate drugs for CRC treatment.</p><p><strong>Conclusions: </strong>This is the first study to develop neuron synapse-related biomarkers from the perspective of neuron-cancer interactions using machine learning. We constructed a robust NSRS model and identified candidate drugs targeting prognostic NSGs, providing new insights into CRC prognosis and treatment.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 5","pages":"2737-2757"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of neuronal synapse-related signatures and potential therapeutic drugs in colorectal cancer based on machine learning algorithms and molecular docking.\",\"authors\":\"Wen-Jing Wu, Kan Wang, Yang Vivian Yang, Xiaoning Yang\",\"doi\":\"10.21037/tcr-24-1988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Nervous system-cancer interactions can regulate tumorigenesis, invasion, and metastasis. However, specific biomarkers for targeting neuron synapse in colorectal cancer (CRC) remain unexplored. This study aims to develop a neuronal synapse-related signature (NSRS) to predict survival in CRC patients, identify potential therapeutic drugs, and explore its clinical applications.</p><p><strong>Methods: </strong>We collected neuronal synapse genes (NSGs) from the Molecular Signatures Database (MSigDB) and published mass spectrometry data. Using weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator Cox regression (LASSO-Cox), we identified prognostic NSGs and constructed a NSRS through multivariate Cox regression. Functional enrichment analysis revealed the molecular characteristics of NSRS subgroups. Additionally, xCell and ESTIMATE algorithms quantified the abundance of 54 cell subtypes and assessed the tumor immune microenvironment (TIME) of the two NSRS subgroups. Finally, drug prediction and molecular docking identified candidate drugs with therapeutic potential.</p><p><strong>Results: </strong>Seven key prognostic NSGs were identified, and an independent, stable NSRS model was constructed. Kaplan-Meier survival curves indicated that the high NSRS group had poorer outcomes (log-rank test, P<0.05). Functional enrichment analysis revealed significant enrichment of epithelial-mesenchymal transition, hypoxia, and inflammation features in the high NSRS group. xCell and ESTIMATE analyses showed a more complex TIME and lower tumor purity in the high NSRS group, highlighting the role of neuro-tumor interactions in CRC. Drug prediction and molecular docking suggested alprostadil, dihydroergocristine, and nocodazole as candidate drugs for CRC treatment.</p><p><strong>Conclusions: </strong>This is the first study to develop neuron synapse-related biomarkers from the perspective of neuron-cancer interactions using machine learning. We constructed a robust NSRS model and identified candidate drugs targeting prognostic NSGs, providing new insights into CRC prognosis and treatment.</p>\",\"PeriodicalId\":23216,\"journal\":{\"name\":\"Translational cancer research\",\"volume\":\"14 5\",\"pages\":\"2737-2757\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tcr-24-1988\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-1988","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Identification of neuronal synapse-related signatures and potential therapeutic drugs in colorectal cancer based on machine learning algorithms and molecular docking.
Background: Nervous system-cancer interactions can regulate tumorigenesis, invasion, and metastasis. However, specific biomarkers for targeting neuron synapse in colorectal cancer (CRC) remain unexplored. This study aims to develop a neuronal synapse-related signature (NSRS) to predict survival in CRC patients, identify potential therapeutic drugs, and explore its clinical applications.
Methods: We collected neuronal synapse genes (NSGs) from the Molecular Signatures Database (MSigDB) and published mass spectrometry data. Using weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator Cox regression (LASSO-Cox), we identified prognostic NSGs and constructed a NSRS through multivariate Cox regression. Functional enrichment analysis revealed the molecular characteristics of NSRS subgroups. Additionally, xCell and ESTIMATE algorithms quantified the abundance of 54 cell subtypes and assessed the tumor immune microenvironment (TIME) of the two NSRS subgroups. Finally, drug prediction and molecular docking identified candidate drugs with therapeutic potential.
Results: Seven key prognostic NSGs were identified, and an independent, stable NSRS model was constructed. Kaplan-Meier survival curves indicated that the high NSRS group had poorer outcomes (log-rank test, P<0.05). Functional enrichment analysis revealed significant enrichment of epithelial-mesenchymal transition, hypoxia, and inflammation features in the high NSRS group. xCell and ESTIMATE analyses showed a more complex TIME and lower tumor purity in the high NSRS group, highlighting the role of neuro-tumor interactions in CRC. Drug prediction and molecular docking suggested alprostadil, dihydroergocristine, and nocodazole as candidate drugs for CRC treatment.
Conclusions: This is the first study to develop neuron synapse-related biomarkers from the perspective of neuron-cancer interactions using machine learning. We constructed a robust NSRS model and identified candidate drugs targeting prognostic NSGs, providing new insights into CRC prognosis and treatment.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.