André P Schmidt, Denise A Otsuki, Gisele Hansel, Jean P Oses, Carolina D Wiener, Fernanda P Moreira, Luís V Portela, Diogo O Souza, Jose O C Auler
{"title":"鸟苷或肌苷在猪失血性休克模型中的急性作用。","authors":"André P Schmidt, Denise A Otsuki, Gisele Hansel, Jean P Oses, Carolina D Wiener, Fernanda P Moreira, Luís V Portela, Diogo O Souza, Jose O C Auler","doi":"10.1007/s11302-025-10097-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hemorrhagic shock (HS) leads to systemic hypoperfusion, impaired tissue oxygenation, and multi-organ dysfunction, including central nervous system (CNS) injury. Guanosine and inosine, purine nucleosides with neuroprotective and anti-inflammatory properties, have demonstrated beneficial effects in models of neurotoxicity, ischemia, and septic shock. This study evaluated the acute effects of guanosine and inosine in fluid resuscitation, focusing on brain energy metabolism, neuroinflammatory mechanisms, and hemodynamic responses in a porcine model of HS. Thirty pigs (25-30 kg) underwent controlled hemorrhage to achieve a target mean arterial pressure (MAP) of 40 - 45 mmHg, maintained for 60 min. Animals were randomized into three resuscitation groups: Lactated Ringer's solution (LR), LR + guanosine (1 mmol/L), and LR + inosine (1 mmol/L), administered over 15 - 20 min. Hemodynamic, metabolic, and neuronal parameters were monitored for 440 min post-HS, with serial blood and cerebrospinal fluid (CSF) sampling to assess glutamate, lactate, glucose, neuron-specific enolase (NSE), and inflammatory cytokines. HS induced metabolic acidosis, increased CSF glutamate levels, and elevated proinflammatory cytokines (IL-1β, TNF-α, IFN-γ, IL-8). Guanosine and inosine reduced glutamate levels more rapidly than LR alone and attenuated IL-1β and TNF-α elevations. Inosine resuscitation improved MAP, systemic vascular resistance index (SVRI), and end-diastolic volume index (EDVI), suggesting enhanced hemodynamic stabilization. Guanosine and inosine modulated neuroinflammatory and metabolic responses in HS, reducing excitotoxicity and inflammatory cytokine release. Inosine also demonstrated hemodynamic benefits. These findings support further investigation into their therapeutic potential in shock resuscitation.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute effects of guanosine or inosine in a porcine model of hemorrhagic shock.\",\"authors\":\"André P Schmidt, Denise A Otsuki, Gisele Hansel, Jean P Oses, Carolina D Wiener, Fernanda P Moreira, Luís V Portela, Diogo O Souza, Jose O C Auler\",\"doi\":\"10.1007/s11302-025-10097-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemorrhagic shock (HS) leads to systemic hypoperfusion, impaired tissue oxygenation, and multi-organ dysfunction, including central nervous system (CNS) injury. Guanosine and inosine, purine nucleosides with neuroprotective and anti-inflammatory properties, have demonstrated beneficial effects in models of neurotoxicity, ischemia, and septic shock. This study evaluated the acute effects of guanosine and inosine in fluid resuscitation, focusing on brain energy metabolism, neuroinflammatory mechanisms, and hemodynamic responses in a porcine model of HS. Thirty pigs (25-30 kg) underwent controlled hemorrhage to achieve a target mean arterial pressure (MAP) of 40 - 45 mmHg, maintained for 60 min. Animals were randomized into three resuscitation groups: Lactated Ringer's solution (LR), LR + guanosine (1 mmol/L), and LR + inosine (1 mmol/L), administered over 15 - 20 min. Hemodynamic, metabolic, and neuronal parameters were monitored for 440 min post-HS, with serial blood and cerebrospinal fluid (CSF) sampling to assess glutamate, lactate, glucose, neuron-specific enolase (NSE), and inflammatory cytokines. HS induced metabolic acidosis, increased CSF glutamate levels, and elevated proinflammatory cytokines (IL-1β, TNF-α, IFN-γ, IL-8). Guanosine and inosine reduced glutamate levels more rapidly than LR alone and attenuated IL-1β and TNF-α elevations. Inosine resuscitation improved MAP, systemic vascular resistance index (SVRI), and end-diastolic volume index (EDVI), suggesting enhanced hemodynamic stabilization. Guanosine and inosine modulated neuroinflammatory and metabolic responses in HS, reducing excitotoxicity and inflammatory cytokine release. Inosine also demonstrated hemodynamic benefits. These findings support further investigation into their therapeutic potential in shock resuscitation.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10097-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10097-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Acute effects of guanosine or inosine in a porcine model of hemorrhagic shock.
Hemorrhagic shock (HS) leads to systemic hypoperfusion, impaired tissue oxygenation, and multi-organ dysfunction, including central nervous system (CNS) injury. Guanosine and inosine, purine nucleosides with neuroprotective and anti-inflammatory properties, have demonstrated beneficial effects in models of neurotoxicity, ischemia, and septic shock. This study evaluated the acute effects of guanosine and inosine in fluid resuscitation, focusing on brain energy metabolism, neuroinflammatory mechanisms, and hemodynamic responses in a porcine model of HS. Thirty pigs (25-30 kg) underwent controlled hemorrhage to achieve a target mean arterial pressure (MAP) of 40 - 45 mmHg, maintained for 60 min. Animals were randomized into three resuscitation groups: Lactated Ringer's solution (LR), LR + guanosine (1 mmol/L), and LR + inosine (1 mmol/L), administered over 15 - 20 min. Hemodynamic, metabolic, and neuronal parameters were monitored for 440 min post-HS, with serial blood and cerebrospinal fluid (CSF) sampling to assess glutamate, lactate, glucose, neuron-specific enolase (NSE), and inflammatory cytokines. HS induced metabolic acidosis, increased CSF glutamate levels, and elevated proinflammatory cytokines (IL-1β, TNF-α, IFN-γ, IL-8). Guanosine and inosine reduced glutamate levels more rapidly than LR alone and attenuated IL-1β and TNF-α elevations. Inosine resuscitation improved MAP, systemic vascular resistance index (SVRI), and end-diastolic volume index (EDVI), suggesting enhanced hemodynamic stabilization. Guanosine and inosine modulated neuroinflammatory and metabolic responses in HS, reducing excitotoxicity and inflammatory cytokine release. Inosine also demonstrated hemodynamic benefits. These findings support further investigation into their therapeutic potential in shock resuscitation.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.