Ilia Kuk, Ivan B Djordjevic, Ildar R Gabitov, Keith Runge, Akinsanmi S Ige, Pierre A Deymier
{"title":"非线性声学中的量子逻辑门类比。","authors":"Ilia Kuk, Ivan B Djordjevic, Ildar R Gabitov, Keith Runge, Akinsanmi S Ige, Pierre A Deymier","doi":"10.1121/10.0036901","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a framework using acoustic phase bits (phibits) as classical analogs to quantum bits for realizing quantum-like gates. These phibits are realized on a metastructure composed of aluminum rods glued with epoxy. First, we realize a single phibit gate in a general form for a Bloch sphere representation, providing a foundation for implementing arbitrary gate operations on a single phibit. Second, within a single mathematical representation, we achieve either the Hadamard or NOT gate by applying the corresponding distinct physical actions for each. Third, we demonstrate the implementation of a sequence of two quantum-like gates, Hadamard followed by CNOT, using a single physical action. This illustrates the effectiveness of the phibit framework, which has the potential to simplify the implementation of a whole series of sequential gates into a single unified physical operation. Finally, we realize a universal set of gates, including the Hadamard, CNOT, and T gates, within a single mathematical representation with three distinctive actions. This approach addresses prior limitations of phibit-based gates, such as Hadamard and CNOT, which were implemented in separate mathematical representations, by introducing a unified framework that eliminates the need for distinct formulations maintaining computational efficiency.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 6","pages":"4437-4448"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum logic gate analogies in nonlinear acoustics.\",\"authors\":\"Ilia Kuk, Ivan B Djordjevic, Ildar R Gabitov, Keith Runge, Akinsanmi S Ige, Pierre A Deymier\",\"doi\":\"10.1121/10.0036901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a framework using acoustic phase bits (phibits) as classical analogs to quantum bits for realizing quantum-like gates. These phibits are realized on a metastructure composed of aluminum rods glued with epoxy. First, we realize a single phibit gate in a general form for a Bloch sphere representation, providing a foundation for implementing arbitrary gate operations on a single phibit. Second, within a single mathematical representation, we achieve either the Hadamard or NOT gate by applying the corresponding distinct physical actions for each. Third, we demonstrate the implementation of a sequence of two quantum-like gates, Hadamard followed by CNOT, using a single physical action. This illustrates the effectiveness of the phibit framework, which has the potential to simplify the implementation of a whole series of sequential gates into a single unified physical operation. Finally, we realize a universal set of gates, including the Hadamard, CNOT, and T gates, within a single mathematical representation with three distinctive actions. This approach addresses prior limitations of phibit-based gates, such as Hadamard and CNOT, which were implemented in separate mathematical representations, by introducing a unified framework that eliminates the need for distinct formulations maintaining computational efficiency.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"157 6\",\"pages\":\"4437-4448\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036901\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036901","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Quantum logic gate analogies in nonlinear acoustics.
This study introduces a framework using acoustic phase bits (phibits) as classical analogs to quantum bits for realizing quantum-like gates. These phibits are realized on a metastructure composed of aluminum rods glued with epoxy. First, we realize a single phibit gate in a general form for a Bloch sphere representation, providing a foundation for implementing arbitrary gate operations on a single phibit. Second, within a single mathematical representation, we achieve either the Hadamard or NOT gate by applying the corresponding distinct physical actions for each. Third, we demonstrate the implementation of a sequence of two quantum-like gates, Hadamard followed by CNOT, using a single physical action. This illustrates the effectiveness of the phibit framework, which has the potential to simplify the implementation of a whole series of sequential gates into a single unified physical operation. Finally, we realize a universal set of gates, including the Hadamard, CNOT, and T gates, within a single mathematical representation with three distinctive actions. This approach addresses prior limitations of phibit-based gates, such as Hadamard and CNOT, which were implemented in separate mathematical representations, by introducing a unified framework that eliminates the need for distinct formulations maintaining computational efficiency.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.