估计最佳样本数量以确定牲畜的有效种群大小。

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Frontiers in Genetics Pub Date : 2025-06-03 eCollection Date: 2025-01-01 DOI:10.3389/fgene.2025.1588986
Arianna Manunza, Paolo Cozzi, Paul Boettcher, Ino Curik, Christian Looft, Licia Colli, Johann Sölkner, Gábor Mészáros, Alessandra Stella
{"title":"估计最佳样本数量以确定牲畜的有效种群大小。","authors":"Arianna Manunza, Paolo Cozzi, Paul Boettcher, Ino Curik, Christian Looft, Licia Colli, Johann Sölkner, Gábor Mészáros, Alessandra Stella","doi":"10.3389/fgene.2025.1588986","DOIUrl":null,"url":null,"abstract":"<p><p>Effective population size (<i>Ne</i>) is a key parameter in various biological disciplines, including evolutionary biology, conservation genetics, and livestock breeding programs. When applying genomic approaches to estimate <i>Ne</i> or other indicators of genetic variation, sample size is among the critical factors that directly affect the balance between cost and precision. In this study, we investigated the impact of sample size on <i>Ne</i> estimates by analyzing data from previous genotyping studies and simulations. Our results suggest that a sample size of 50 animals is a reasonable approximation of the \"true\" (\"unbiased\") <i>Ne</i> value within the populations analyzed. While estimating the <i>Ne</i> value is an important starting point in population genetics, additional factors, such as the degree of inbreeding, population structure, and admixture, must be taken into account to obtain a comprehensive genetic evaluation and avoid misinterpretation. We conclude that linkage disequilibrium (LD)-based approaches are well suited for the estimation of <i>Ne</i> in livestock populations. However, careful interpretation of results is essential as current bioinformatics tools may introduce potential biases due to methodological assumptions, marker density, or population-specific factors.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1588986"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170570/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating the optimal number of samples to determine the effective population size in livestock.\",\"authors\":\"Arianna Manunza, Paolo Cozzi, Paul Boettcher, Ino Curik, Christian Looft, Licia Colli, Johann Sölkner, Gábor Mészáros, Alessandra Stella\",\"doi\":\"10.3389/fgene.2025.1588986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective population size (<i>Ne</i>) is a key parameter in various biological disciplines, including evolutionary biology, conservation genetics, and livestock breeding programs. When applying genomic approaches to estimate <i>Ne</i> or other indicators of genetic variation, sample size is among the critical factors that directly affect the balance between cost and precision. In this study, we investigated the impact of sample size on <i>Ne</i> estimates by analyzing data from previous genotyping studies and simulations. Our results suggest that a sample size of 50 animals is a reasonable approximation of the \\\"true\\\" (\\\"unbiased\\\") <i>Ne</i> value within the populations analyzed. While estimating the <i>Ne</i> value is an important starting point in population genetics, additional factors, such as the degree of inbreeding, population structure, and admixture, must be taken into account to obtain a comprehensive genetic evaluation and avoid misinterpretation. We conclude that linkage disequilibrium (LD)-based approaches are well suited for the estimation of <i>Ne</i> in livestock populations. However, careful interpretation of results is essential as current bioinformatics tools may introduce potential biases due to methodological assumptions, marker density, or population-specific factors.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1588986\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1588986\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1588986","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

有效种群大小(Ne)是各种生物学学科的关键参数,包括进化生物学、保护遗传学和牲畜育种计划。当应用基因组学方法估计Ne或其他遗传变异指标时,样本量是直接影响成本和精度之间平衡的关键因素之一。在本研究中,我们通过分析以往基因分型研究和模拟的数据,研究了样本量对Ne估计的影响。我们的结果表明,50只动物的样本量是在所分析的种群中“真实”(“无偏”)Ne值的合理近似值。估算Ne值是群体遗传学研究的一个重要起点,但为了得到一个全面的遗传评价,避免误读,还必须考虑其他因素,如近交程度、群体结构、混杂程度等。我们得出结论,基于连锁不平衡(LD)的方法非常适合于牲畜种群中Ne的估计。然而,仔细解释结果是必不可少的,因为当前的生物信息学工具可能会由于方法学假设、标记密度或人群特定因素而引入潜在的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the optimal number of samples to determine the effective population size in livestock.

Effective population size (Ne) is a key parameter in various biological disciplines, including evolutionary biology, conservation genetics, and livestock breeding programs. When applying genomic approaches to estimate Ne or other indicators of genetic variation, sample size is among the critical factors that directly affect the balance between cost and precision. In this study, we investigated the impact of sample size on Ne estimates by analyzing data from previous genotyping studies and simulations. Our results suggest that a sample size of 50 animals is a reasonable approximation of the "true" ("unbiased") Ne value within the populations analyzed. While estimating the Ne value is an important starting point in population genetics, additional factors, such as the degree of inbreeding, population structure, and admixture, must be taken into account to obtain a comprehensive genetic evaluation and avoid misinterpretation. We conclude that linkage disequilibrium (LD)-based approaches are well suited for the estimation of Ne in livestock populations. However, careful interpretation of results is essential as current bioinformatics tools may introduce potential biases due to methodological assumptions, marker density, or population-specific factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信