{"title":"滑膜关节器官稳态:机制和生物学考虑。","authors":"Garth Blackler, Hanyu Jiang, C Thomas Appleton","doi":"10.1080/03008207.2025.2512940","DOIUrl":null,"url":null,"abstract":"<p><p>Synovial joints are complex multi-tissue organs that permit movement. A well-functioning synovial joint relies on complex interconnected homeostatic mechanisms to maintain joint organ function in response to biomechanical and metabolic demands. These homeostatic mechanisms include, but are not limited to, appropriate mechanobiological responses to load, nutrient delivery from its vasculature, lubrication, proprioception and pain, immunosurveillance, and maintenance of the extracellular matrix (ECM) composition. In osteoarthritis (OA), joint homeostasis is chronically deranged leading to failure of the synovial joint organ and impairment or loss of function. Maintaining synovial joint organ homeostasis is therefore critical to joint function and relies on complex interconnected physiological process at the joint level. As OA prevalence continues to rise, deepening our understanding of the integrated systems that sustain joint homeostasis may identify fruitful avenues for therapeutic intervention. However, key knowledge gaps will need to be addressed including, characterizing vessel function in joint diseases, understanding the role of novel proteases in ECM catabolism, and determining the role of non-macrophage synovial immune cells in joint immunosurveillance. We believe that future research will find greater success if these homeostatic mechanisms are viewed as a single integrated system that considers the crosstalk between mechanical, vascular, immune, and biochemical factors. Therefore, in this review, we explore the interconnected mechanisms that support joint homeostasis and how dysregulation can lead to failure of the synovial joint organ.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"331-338"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synovial joint organ homeostasis: mechanisms and biological considerations.\",\"authors\":\"Garth Blackler, Hanyu Jiang, C Thomas Appleton\",\"doi\":\"10.1080/03008207.2025.2512940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synovial joints are complex multi-tissue organs that permit movement. A well-functioning synovial joint relies on complex interconnected homeostatic mechanisms to maintain joint organ function in response to biomechanical and metabolic demands. These homeostatic mechanisms include, but are not limited to, appropriate mechanobiological responses to load, nutrient delivery from its vasculature, lubrication, proprioception and pain, immunosurveillance, and maintenance of the extracellular matrix (ECM) composition. In osteoarthritis (OA), joint homeostasis is chronically deranged leading to failure of the synovial joint organ and impairment or loss of function. Maintaining synovial joint organ homeostasis is therefore critical to joint function and relies on complex interconnected physiological process at the joint level. As OA prevalence continues to rise, deepening our understanding of the integrated systems that sustain joint homeostasis may identify fruitful avenues for therapeutic intervention. However, key knowledge gaps will need to be addressed including, characterizing vessel function in joint diseases, understanding the role of novel proteases in ECM catabolism, and determining the role of non-macrophage synovial immune cells in joint immunosurveillance. We believe that future research will find greater success if these homeostatic mechanisms are viewed as a single integrated system that considers the crosstalk between mechanical, vascular, immune, and biochemical factors. Therefore, in this review, we explore the interconnected mechanisms that support joint homeostasis and how dysregulation can lead to failure of the synovial joint organ.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"331-338\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2025.2512940\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2512940","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Synovial joint organ homeostasis: mechanisms and biological considerations.
Synovial joints are complex multi-tissue organs that permit movement. A well-functioning synovial joint relies on complex interconnected homeostatic mechanisms to maintain joint organ function in response to biomechanical and metabolic demands. These homeostatic mechanisms include, but are not limited to, appropriate mechanobiological responses to load, nutrient delivery from its vasculature, lubrication, proprioception and pain, immunosurveillance, and maintenance of the extracellular matrix (ECM) composition. In osteoarthritis (OA), joint homeostasis is chronically deranged leading to failure of the synovial joint organ and impairment or loss of function. Maintaining synovial joint organ homeostasis is therefore critical to joint function and relies on complex interconnected physiological process at the joint level. As OA prevalence continues to rise, deepening our understanding of the integrated systems that sustain joint homeostasis may identify fruitful avenues for therapeutic intervention. However, key knowledge gaps will need to be addressed including, characterizing vessel function in joint diseases, understanding the role of novel proteases in ECM catabolism, and determining the role of non-macrophage synovial immune cells in joint immunosurveillance. We believe that future research will find greater success if these homeostatic mechanisms are viewed as a single integrated system that considers the crosstalk between mechanical, vascular, immune, and biochemical factors. Therefore, in this review, we explore the interconnected mechanisms that support joint homeostasis and how dysregulation can lead to failure of the synovial joint organ.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.