Jiahui Guan, Peilin Xie, Dian Meng, Lantian Yao, Dan Yu, Ying-Chih Chiang, Tzong-Yi Lee, Junwen Wang
{"title":"ToxiPep:通过融合上下文感知表示和原子水平图的肽毒性预测。","authors":"Jiahui Guan, Peilin Xie, Dian Meng, Lantian Yao, Dan Yu, Ying-Chih Chiang, Tzong-Yi Lee, Junwen Wang","doi":"10.1016/j.csbj.2025.05.039","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide-based therapeutics have emerged as a promising avenue in drug development, offering high biocompatibility, specificity, and efficacy. However, the potential toxicity of peptides remains a significant challenge, necessitating the development of robust toxicity prediction methods. In this study, we introduce ToxiPep, a novel dual-model framework for peptide toxicity prediction that integrates sequence-based contextual information with atomic-level structural features. This framework combines BiGRU and Transformer to capture local and global sequence dependencies while leveraging multi-scale CNNs to extract refined structural features from molecular graphs derived from peptide SMILES representations. A cross-attention mechanism aligns and fuses these two feature modalities, enabling the model to capture intricate relationships between sequence and structural information. ToxiPep outperforms several state-of-the-art tools, including ToxinPred2, CSM-Toxin, PepNet, and ToxinPred3, on both internal and independent test sets. Additionally, interpretability analyses reveal that ToxiPep identifies key amino acids along with their structural features, providing insights into the molecular mechanisms of peptide toxicity. To facilitate broader accessibility, we have also developed a web server for convenient user access. Overall, this framework has the potential to accelerate the identification of safer therapeutic peptides, offering new opportunities for peptide-based drug development in precision medicine.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2347-2358"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171765/pdf/","citationCount":"0","resultStr":"{\"title\":\"ToxiPep: Peptide toxicity prediction via fusion of context-aware representation and atomic-level graph.\",\"authors\":\"Jiahui Guan, Peilin Xie, Dian Meng, Lantian Yao, Dan Yu, Ying-Chih Chiang, Tzong-Yi Lee, Junwen Wang\",\"doi\":\"10.1016/j.csbj.2025.05.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptide-based therapeutics have emerged as a promising avenue in drug development, offering high biocompatibility, specificity, and efficacy. However, the potential toxicity of peptides remains a significant challenge, necessitating the development of robust toxicity prediction methods. In this study, we introduce ToxiPep, a novel dual-model framework for peptide toxicity prediction that integrates sequence-based contextual information with atomic-level structural features. This framework combines BiGRU and Transformer to capture local and global sequence dependencies while leveraging multi-scale CNNs to extract refined structural features from molecular graphs derived from peptide SMILES representations. A cross-attention mechanism aligns and fuses these two feature modalities, enabling the model to capture intricate relationships between sequence and structural information. ToxiPep outperforms several state-of-the-art tools, including ToxinPred2, CSM-Toxin, PepNet, and ToxinPred3, on both internal and independent test sets. Additionally, interpretability analyses reveal that ToxiPep identifies key amino acids along with their structural features, providing insights into the molecular mechanisms of peptide toxicity. To facilitate broader accessibility, we have also developed a web server for convenient user access. Overall, this framework has the potential to accelerate the identification of safer therapeutic peptides, offering new opportunities for peptide-based drug development in precision medicine.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2347-2358\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171765/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.05.039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.05.039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ToxiPep: Peptide toxicity prediction via fusion of context-aware representation and atomic-level graph.
Peptide-based therapeutics have emerged as a promising avenue in drug development, offering high biocompatibility, specificity, and efficacy. However, the potential toxicity of peptides remains a significant challenge, necessitating the development of robust toxicity prediction methods. In this study, we introduce ToxiPep, a novel dual-model framework for peptide toxicity prediction that integrates sequence-based contextual information with atomic-level structural features. This framework combines BiGRU and Transformer to capture local and global sequence dependencies while leveraging multi-scale CNNs to extract refined structural features from molecular graphs derived from peptide SMILES representations. A cross-attention mechanism aligns and fuses these two feature modalities, enabling the model to capture intricate relationships between sequence and structural information. ToxiPep outperforms several state-of-the-art tools, including ToxinPred2, CSM-Toxin, PepNet, and ToxinPred3, on both internal and independent test sets. Additionally, interpretability analyses reveal that ToxiPep identifies key amino acids along with their structural features, providing insights into the molecular mechanisms of peptide toxicity. To facilitate broader accessibility, we have also developed a web server for convenient user access. Overall, this framework has the potential to accelerate the identification of safer therapeutic peptides, offering new opportunities for peptide-based drug development in precision medicine.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology