超扩散分数布朗运动的离散空间和时间模拟。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0265735
Enzo Marinari, Gleb Oshanin
{"title":"超扩散分数布朗运动的离散空间和时间模拟。","authors":"Enzo Marinari, Gleb Oshanin","doi":"10.1063/5.0265735","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss how to construct reliably well \"a lattice and an integer time\" version of super-diffusive continuous-space and -time fractional Brownian motion (fBm)-an experimentally relevant non-Markovian Gaussian stochastic process with an everlasting power-law memory on the time-evolution of thermal noises extending over the entire past. We propose two algorithms, which are both validated by extensive numerical simulations showing that the ensuing lattice random walks have not only the same power-law covariance function as the standard fBm, but also individual trajectories follow those of the super-diffusive fBm. Finding a lattice and an integer time analog of sub-diffusion fBm, which is an anti-persistent process, remains a challenging open problem. Our results also clarify the relevant difference between sub-diffusive and super-diffusive fBm, which are frequently seen as two very analogous realizations of processes with memory. They are indeed substantially different.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete-space and -time analog of a super-diffusive fractional Brownian motion.\",\"authors\":\"Enzo Marinari, Gleb Oshanin\",\"doi\":\"10.1063/5.0265735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We discuss how to construct reliably well \\\"a lattice and an integer time\\\" version of super-diffusive continuous-space and -time fractional Brownian motion (fBm)-an experimentally relevant non-Markovian Gaussian stochastic process with an everlasting power-law memory on the time-evolution of thermal noises extending over the entire past. We propose two algorithms, which are both validated by extensive numerical simulations showing that the ensuing lattice random walks have not only the same power-law covariance function as the standard fBm, but also individual trajectories follow those of the super-diffusive fBm. Finding a lattice and an integer time analog of sub-diffusion fBm, which is an anti-persistent process, remains a challenging open problem. Our results also clarify the relevant difference between sub-diffusive and super-diffusive fBm, which are frequently seen as two very analogous realizations of processes with memory. They are indeed substantially different.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0265735\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0265735","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了如何可靠地构造超扩散连续空间和时间分数布朗运动(fBm)的“晶格和整数时间”版本,fBm是一种实验相关的非马尔可夫高斯随机过程,对整个过去的热噪声的时间演化具有持久的幂律记忆。我们提出了两种算法,并通过大量的数值模拟验证了这两种算法,表明随后的晶格随机漫步不仅具有与标准fBm相同的幂律协方差函数,而且单个轨迹也遵循超扩散fBm的轨迹。子扩散fBm是一个反持续过程,寻找其晶格和整数时间的模拟仍然是一个具有挑战性的开放问题。我们的研究结果还澄清了亚扩散和超扩散fBm之间的相关差异,它们通常被视为具有记忆的过程的两种非常类似的实现。它们确实有本质上的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-space and -time analog of a super-diffusive fractional Brownian motion.

We discuss how to construct reliably well "a lattice and an integer time" version of super-diffusive continuous-space and -time fractional Brownian motion (fBm)-an experimentally relevant non-Markovian Gaussian stochastic process with an everlasting power-law memory on the time-evolution of thermal noises extending over the entire past. We propose two algorithms, which are both validated by extensive numerical simulations showing that the ensuing lattice random walks have not only the same power-law covariance function as the standard fBm, but also individual trajectories follow those of the super-diffusive fBm. Finding a lattice and an integer time analog of sub-diffusion fBm, which is an anti-persistent process, remains a challenging open problem. Our results also clarify the relevant difference between sub-diffusive and super-diffusive fBm, which are frequently seen as two very analogous realizations of processes with memory. They are indeed substantially different.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信