氟化氢液-气界面的分子水平结构。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Elija Feigl, Marcello Sega and Pál Jedlovszky*, 
{"title":"氟化氢液-气界面的分子水平结构。","authors":"Elija Feigl,&nbsp;Marcello Sega and Pál Jedlovszky*,&nbsp;","doi":"10.1021/acs.jpcb.5c02397","DOIUrl":null,"url":null,"abstract":"<p >Using a Drude-based polarizable model, we investigate the liquid–vapor interface of hydrogen fluoride (HF) via molecular dynamics simulations. The interface displays a complex morphology with vapor-phase clusters, large internal bubbles in the liquid phase, and extended chains of hydrogen-bonded molecules protruding from the surface into the vapor phase. These features arise from the dual cohesive mechanisms in HF, i.e., strong directional hydrogen bonds and weaker van der Waals interactions, which act at distinct length and energy scales. The resulting surface structure resembles that of polymer melts and deviates markedly from that of conventional molecular liquids. We show that the anomalously low surface tension of HF and the associated emergence of interfacial heterogeneity can be understood in terms of the reduced van der Waals coordination imposed by the strong hydrogen bonding, showing the opposite effect as in other associative liquids like water.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 26","pages":"6731–6740"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Level Structure of the Liquid–Vapor Interface of Hydrogen Fluoride\",\"authors\":\"Elija Feigl,&nbsp;Marcello Sega and Pál Jedlovszky*,&nbsp;\",\"doi\":\"10.1021/acs.jpcb.5c02397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Using a Drude-based polarizable model, we investigate the liquid–vapor interface of hydrogen fluoride (HF) via molecular dynamics simulations. The interface displays a complex morphology with vapor-phase clusters, large internal bubbles in the liquid phase, and extended chains of hydrogen-bonded molecules protruding from the surface into the vapor phase. These features arise from the dual cohesive mechanisms in HF, i.e., strong directional hydrogen bonds and weaker van der Waals interactions, which act at distinct length and energy scales. The resulting surface structure resembles that of polymer melts and deviates markedly from that of conventional molecular liquids. We show that the anomalously low surface tension of HF and the associated emergence of interfacial heterogeneity can be understood in terms of the reduced van der Waals coordination imposed by the strong hydrogen bonding, showing the opposite effect as in other associative liquids like water.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\"129 26\",\"pages\":\"6731–6740\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02397\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.5c02397","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用基于drude的极化模型,通过分子动力学模拟研究了氟化氢(HF)的液-气界面。该界面具有复杂的形态,包括气相簇,液相中的大内部气泡,以及从表面伸出的氢键分子延伸链。这些特征源于HF的双重内聚机制,即在不同的长度和能量尺度上作用的强定向氢键和弱范德华相互作用。所得的表面结构类似于聚合物熔体的表面结构,与传统分子液体的表面结构明显不同。我们表明,HF的异常低表面张力和界面非均质性的出现可以通过强氢键施加的范德瓦尔斯配位的降低来理解,显示出与其他结合液体(如水)相反的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular Level Structure of the Liquid–Vapor Interface of Hydrogen Fluoride

Molecular Level Structure of the Liquid–Vapor Interface of Hydrogen Fluoride

Using a Drude-based polarizable model, we investigate the liquid–vapor interface of hydrogen fluoride (HF) via molecular dynamics simulations. The interface displays a complex morphology with vapor-phase clusters, large internal bubbles in the liquid phase, and extended chains of hydrogen-bonded molecules protruding from the surface into the vapor phase. These features arise from the dual cohesive mechanisms in HF, i.e., strong directional hydrogen bonds and weaker van der Waals interactions, which act at distinct length and energy scales. The resulting surface structure resembles that of polymer melts and deviates markedly from that of conventional molecular liquids. We show that the anomalously low surface tension of HF and the associated emergence of interfacial heterogeneity can be understood in terms of the reduced van der Waals coordination imposed by the strong hydrogen bonding, showing the opposite effect as in other associative liquids like water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信