基于多源先验约束的船舶管道特征贝叶斯融合框架

Han-Jie Ji;Li-Xin Guo;Jin-Peng Zhang;Yi-Wen Wei;Qing-Liang Li;Xiang-Ming Guo;Yu-Sheng Zhang
{"title":"基于多源先验约束的船舶管道特征贝叶斯融合框架","authors":"Han-Jie Ji;Li-Xin Guo;Jin-Peng Zhang;Yi-Wen Wei;Qing-Liang Li;Xiang-Ming Guo;Yu-Sheng Zhang","doi":"10.1109/LGRS.2025.3576657","DOIUrl":null,"url":null,"abstract":"The study of surface-layer evaporation ducts (EDs) maintains persistent scientific significance due to their critical role in modulating tropospheric propagation. While multiple ED quantification methodologies exist, the inherent complexity of these atmospheric structures radically constrains the observational completeness achievable through singular technologies. To address this limitation, we develop a novel Bayesian fusion framework that systematically integrates multisource knowledge through probabilistic reasoning to estimate ED from point-to-point (PTP) propagation loss (PL) observations. This approach reformulates the inverse problem as a maximum likelihood estimation challenge, systematically synthesizing prior ED distributions (derived from diverse knowledge sources) with PL-constrained likelihood functions through a rigorous Bayesian approach. This probabilistic integration enables robust determination of posterior ED distributions while inherently quantifying retrieval uncertainties. Validation experiments using a dedicated dataset confirm the framework’s viability, demonstrating sufficient accuracy to support real-world marine applications.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Fusion Framework for Characterizing Marine Ducts Using Multisource Prior Constraints\",\"authors\":\"Han-Jie Ji;Li-Xin Guo;Jin-Peng Zhang;Yi-Wen Wei;Qing-Liang Li;Xiang-Ming Guo;Yu-Sheng Zhang\",\"doi\":\"10.1109/LGRS.2025.3576657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of surface-layer evaporation ducts (EDs) maintains persistent scientific significance due to their critical role in modulating tropospheric propagation. While multiple ED quantification methodologies exist, the inherent complexity of these atmospheric structures radically constrains the observational completeness achievable through singular technologies. To address this limitation, we develop a novel Bayesian fusion framework that systematically integrates multisource knowledge through probabilistic reasoning to estimate ED from point-to-point (PTP) propagation loss (PL) observations. This approach reformulates the inverse problem as a maximum likelihood estimation challenge, systematically synthesizing prior ED distributions (derived from diverse knowledge sources) with PL-constrained likelihood functions through a rigorous Bayesian approach. This probabilistic integration enables robust determination of posterior ED distributions while inherently quantifying retrieval uncertainties. Validation experiments using a dedicated dataset confirm the framework’s viability, demonstrating sufficient accuracy to support real-world marine applications.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11023601/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11023601/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于地表蒸发管道在调节对流层传播中起着至关重要的作用,因此对其的研究具有持久的科学意义。虽然存在多种ED量化方法,但这些大气结构固有的复杂性从根本上限制了通过单一技术可以实现的观测完整性。为了解决这一限制,我们开发了一种新的贝叶斯融合框架,该框架通过概率推理系统地集成多源知识,从点对点(PTP)传播损耗(PL)观测中估计ED。该方法将反问题重新表述为最大似然估计挑战,通过严格的贝叶斯方法系统地综合先验ED分布(来自不同知识来源)和pl约束的似然函数。这种概率整合使后验ED分布的鲁棒性确定,同时固有地量化检索的不确定性。使用专用数据集的验证实验证实了该框架的可行性,证明了足够的准确性,可以支持现实世界的海洋应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Fusion Framework for Characterizing Marine Ducts Using Multisource Prior Constraints
The study of surface-layer evaporation ducts (EDs) maintains persistent scientific significance due to their critical role in modulating tropospheric propagation. While multiple ED quantification methodologies exist, the inherent complexity of these atmospheric structures radically constrains the observational completeness achievable through singular technologies. To address this limitation, we develop a novel Bayesian fusion framework that systematically integrates multisource knowledge through probabilistic reasoning to estimate ED from point-to-point (PTP) propagation loss (PL) observations. This approach reformulates the inverse problem as a maximum likelihood estimation challenge, systematically synthesizing prior ED distributions (derived from diverse knowledge sources) with PL-constrained likelihood functions through a rigorous Bayesian approach. This probabilistic integration enables robust determination of posterior ED distributions while inherently quantifying retrieval uncertainties. Validation experiments using a dedicated dataset confirm the framework’s viability, demonstrating sufficient accuracy to support real-world marine applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信