利用异构图集成产业链信息进行投资组合选择

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ke Zhou;Xinman Huang;Dongxiao Yu;Jinhui Cao
{"title":"利用异构图集成产业链信息进行投资组合选择","authors":"Ke Zhou;Xinman Huang;Dongxiao Yu;Jinhui Cao","doi":"10.1109/TCE.2025.3552780","DOIUrl":null,"url":null,"abstract":"Price prediction plays a crucial role in consumer management and portfolio selection and significant advancements have been made in this domain by leveraging the capability of deep learning to handle complex relationship information. Nevertheless, existing methods predominantly analyze homogeneous stock relationships, such as industry affiliations, overlooking heterogeneous correlation information in industrial chains’ upstream and downstream segments. To address this gap, we propose a novel approach employing heterogeneous graph attention networks for price prediction and portfolio selection. This method integrates a sequential information process module with a heterogeneous graph attention network that extracts relationships within industrial chains. We employ a comprehensive empirical study of the Chinese stock market, indicating that our model enhances investment and offers novel data-driven business insights for consumers.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 1","pages":"501-515"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating the Industrial Chain Information Using Heterogeneous Graph for Portfolio Selection\",\"authors\":\"Ke Zhou;Xinman Huang;Dongxiao Yu;Jinhui Cao\",\"doi\":\"10.1109/TCE.2025.3552780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Price prediction plays a crucial role in consumer management and portfolio selection and significant advancements have been made in this domain by leveraging the capability of deep learning to handle complex relationship information. Nevertheless, existing methods predominantly analyze homogeneous stock relationships, such as industry affiliations, overlooking heterogeneous correlation information in industrial chains’ upstream and downstream segments. To address this gap, we propose a novel approach employing heterogeneous graph attention networks for price prediction and portfolio selection. This method integrates a sequential information process module with a heterogeneous graph attention network that extracts relationships within industrial chains. We employ a comprehensive empirical study of the Chinese stock market, indicating that our model enhances investment and offers novel data-driven business insights for consumers.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"71 1\",\"pages\":\"501-515\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10934081/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10934081/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

价格预测在消费者管理和投资组合选择中起着至关重要的作用,通过利用深度学习处理复杂关系信息的能力,在这一领域取得了重大进展。然而,现有的方法主要分析同质的股票关系,如行业从属关系,忽略了产业链上下游环节的异质相关信息。为了解决这一差距,我们提出了一种采用异构图关注网络进行价格预测和投资组合选择的新方法。该方法将序列信息处理模块与异构图关注网络相结合,提取产业链内的关系。我们对中国股票市场进行了全面的实证研究,表明我们的模型增强了投资,并为消费者提供了新颖的数据驱动的商业见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating the Industrial Chain Information Using Heterogeneous Graph for Portfolio Selection
Price prediction plays a crucial role in consumer management and portfolio selection and significant advancements have been made in this domain by leveraging the capability of deep learning to handle complex relationship information. Nevertheless, existing methods predominantly analyze homogeneous stock relationships, such as industry affiliations, overlooking heterogeneous correlation information in industrial chains’ upstream and downstream segments. To address this gap, we propose a novel approach employing heterogeneous graph attention networks for price prediction and portfolio selection. This method integrates a sequential information process module with a heterogeneous graph attention network that extracts relationships within industrial chains. We employ a comprehensive empirical study of the Chinese stock market, indicating that our model enhances investment and offers novel data-driven business insights for consumers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信