基于聚类和进化多目标优化的最大相关多样性感知、多视频摘要

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aziz M. Qaroush, Mohammad Jubran, Qutaiba Olayyan, Osama Qutait
{"title":"基于聚类和进化多目标优化的最大相关多样性感知、多视频摘要","authors":"Aziz M. Qaroush,&nbsp;Mohammad Jubran,&nbsp;Qutaiba Olayyan,&nbsp;Osama Qutait","doi":"10.1016/j.eswa.2025.128631","DOIUrl":null,"url":null,"abstract":"<div><div>With the exponential increase in video data, efficient video summarization techniques are crucial for handling and analyzing large-scale collections. Multi-video summarization poses unique challenges due to inter-video correlations, redundancy, and variability in content. This paper introduces a novel multi-video summarization approach that combines clustering with evolutionary multi-objective optimization to produce concise, diverse, and informative summaries. Our method begins by segmenting videos into scenes and representing each using I3D CNN features for spatial and temporal dynamics. Through clustering, similar segments across videos are grouped to maximize content diversity while minimizing redundancy. Key video summarization features-visual attention, coverage, and diversity-are then extracted from clusters and segments, and balanced using a multi-objective optimization algorithm. The final summary is generated by selecting a subset of optimized solutions based on a predefined summary ratio, ensuring relevance, coverage, and diversity. Extensive experiments on the Tour20 dataset demonstrate the superiority of our approach, highlighting its potential to address the complexities of multi-video summarization.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"292 ","pages":"Article 128631"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum relevant diversity aware, multi-video summarization using clustering and evolutionally multi-objective optimization\",\"authors\":\"Aziz M. Qaroush,&nbsp;Mohammad Jubran,&nbsp;Qutaiba Olayyan,&nbsp;Osama Qutait\",\"doi\":\"10.1016/j.eswa.2025.128631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the exponential increase in video data, efficient video summarization techniques are crucial for handling and analyzing large-scale collections. Multi-video summarization poses unique challenges due to inter-video correlations, redundancy, and variability in content. This paper introduces a novel multi-video summarization approach that combines clustering with evolutionary multi-objective optimization to produce concise, diverse, and informative summaries. Our method begins by segmenting videos into scenes and representing each using I3D CNN features for spatial and temporal dynamics. Through clustering, similar segments across videos are grouped to maximize content diversity while minimizing redundancy. Key video summarization features-visual attention, coverage, and diversity-are then extracted from clusters and segments, and balanced using a multi-objective optimization algorithm. The final summary is generated by selecting a subset of optimized solutions based on a predefined summary ratio, ensuring relevance, coverage, and diversity. Extensive experiments on the Tour20 dataset demonstrate the superiority of our approach, highlighting its potential to address the complexities of multi-video summarization.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"292 \",\"pages\":\"Article 128631\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741742502250X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742502250X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着视频数据呈指数级增长,高效的视频摘要技术对于处理和分析大规模视频数据集至关重要。由于视频间的相关性、冗余性和内容的可变性,多视频摘要提出了独特的挑战。本文介绍了一种新的多视频摘要方法,该方法将聚类与进化多目标优化相结合,产生简洁、多样、信息丰富的摘要。我们的方法首先将视频分割成场景,并使用I3D CNN特征表示每个场景的空间和时间动态。通过聚类,视频中的相似片段被分组,以最大限度地提高内容多样性,同时最小化冗余。然后从聚类和片段中提取关键的视频摘要特征——视觉注意力、覆盖范围和多样性,并使用多目标优化算法进行平衡。最终的摘要是通过基于预定义的摘要比率选择优化解决方案的子集来生成的,以确保相关性、覆盖率和多样性。Tour20数据集上的大量实验证明了我们方法的优越性,突出了其解决多视频摘要复杂性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum relevant diversity aware, multi-video summarization using clustering and evolutionally multi-objective optimization
With the exponential increase in video data, efficient video summarization techniques are crucial for handling and analyzing large-scale collections. Multi-video summarization poses unique challenges due to inter-video correlations, redundancy, and variability in content. This paper introduces a novel multi-video summarization approach that combines clustering with evolutionary multi-objective optimization to produce concise, diverse, and informative summaries. Our method begins by segmenting videos into scenes and representing each using I3D CNN features for spatial and temporal dynamics. Through clustering, similar segments across videos are grouped to maximize content diversity while minimizing redundancy. Key video summarization features-visual attention, coverage, and diversity-are then extracted from clusters and segments, and balanced using a multi-objective optimization algorithm. The final summary is generated by selecting a subset of optimized solutions based on a predefined summary ratio, ensuring relevance, coverage, and diversity. Extensive experiments on the Tour20 dataset demonstrate the superiority of our approach, highlighting its potential to address the complexities of multi-video summarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信