用机器学习方法预测铸内和铸间铁水温度

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Thiago M. Paixão , Sérgio S. Mucciaccia , Letícia C. Navarro , Filipe Mutz , Vinicius Rampinelli , Claudine Badue , Alberto F. De Souza , Thiago Oliveira-Santos
{"title":"用机器学习方法预测铸内和铸间铁水温度","authors":"Thiago M. Paixão ,&nbsp;Sérgio S. Mucciaccia ,&nbsp;Letícia C. Navarro ,&nbsp;Filipe Mutz ,&nbsp;Vinicius Rampinelli ,&nbsp;Claudine Badue ,&nbsp;Alberto F. De Souza ,&nbsp;Thiago Oliveira-Santos","doi":"10.1016/j.compchemeng.2025.109210","DOIUrl":null,"url":null,"abstract":"<div><div>Hot metal temperature (HMT) forecasting is beneficial for safe and efficient operation of blast furnaces (BFs) in the iron and steel industry. Despite relevant literature, most works addressing HMT forecasting focus on specific solutions tailored for a given (private) dataset. Such datasets reflect particular features of a blast furnace, posing challenges in determining the optimal strategies for HMT forecasting. To tackle the scarcity of more comprehensive studies, this paper presents a more in-depth quantitative and qualitative analysis of machine learning models for HMT forecasting. The study involved over 80,000 temperature records and focused on evaluating the performance of models trained specifically for intra-cast (short-term) and inter-cast (longer-term) scenarios. A detailed temporal analysis revealed that the Multilayer Perceptron yielded the lowest Mean Absolute Error for two-cast-ahead prediction: 11.280 °C for a prediction horizon between 5.5 to 6 h. Considering a variety of horizons, however, simpler and more time-efficient methods, such as Linear Regression and Partial Least Squares, yielded better performance in most cases. The findings offer valuable insights for better decision-making in BF control and maintenance.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"201 ","pages":"Article 109210"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach for intra- and inter-cast hot metal temperature forecasting\",\"authors\":\"Thiago M. Paixão ,&nbsp;Sérgio S. Mucciaccia ,&nbsp;Letícia C. Navarro ,&nbsp;Filipe Mutz ,&nbsp;Vinicius Rampinelli ,&nbsp;Claudine Badue ,&nbsp;Alberto F. De Souza ,&nbsp;Thiago Oliveira-Santos\",\"doi\":\"10.1016/j.compchemeng.2025.109210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hot metal temperature (HMT) forecasting is beneficial for safe and efficient operation of blast furnaces (BFs) in the iron and steel industry. Despite relevant literature, most works addressing HMT forecasting focus on specific solutions tailored for a given (private) dataset. Such datasets reflect particular features of a blast furnace, posing challenges in determining the optimal strategies for HMT forecasting. To tackle the scarcity of more comprehensive studies, this paper presents a more in-depth quantitative and qualitative analysis of machine learning models for HMT forecasting. The study involved over 80,000 temperature records and focused on evaluating the performance of models trained specifically for intra-cast (short-term) and inter-cast (longer-term) scenarios. A detailed temporal analysis revealed that the Multilayer Perceptron yielded the lowest Mean Absolute Error for two-cast-ahead prediction: 11.280 °C for a prediction horizon between 5.5 to 6 h. Considering a variety of horizons, however, simpler and more time-efficient methods, such as Linear Regression and Partial Least Squares, yielded better performance in most cases. The findings offer valuable insights for better decision-making in BF control and maintenance.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"201 \",\"pages\":\"Article 109210\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425002145\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425002145","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

铁水温度预测对钢铁工业高炉的安全、高效运行具有重要意义。尽管有相关文献,但大多数关于HMT预测的工作都集中在为给定(私有)数据集量身定制的特定解决方案上。这些数据集反映了高炉的特定特征,对确定HMT预测的最佳策略提出了挑战。为了解决缺乏更全面研究的问题,本文对用于HMT预测的机器学习模型进行了更深入的定量和定性分析。该研究涉及超过8万份温度记录,重点评估了专门针对铸内(短期)和铸间(长期)情景训练的模型的性能。详细的时间分析表明,多层感知器对两段预测的平均绝对误差最低:在5.5至6小时的预测范围内为11.280°C。然而,考虑到各种范围,更简单、更省时的方法,如线性回归和偏最小二乘,在大多数情况下产生了更好的性能。研究结果为高炉控制和维修决策提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach for intra- and inter-cast hot metal temperature forecasting
Hot metal temperature (HMT) forecasting is beneficial for safe and efficient operation of blast furnaces (BFs) in the iron and steel industry. Despite relevant literature, most works addressing HMT forecasting focus on specific solutions tailored for a given (private) dataset. Such datasets reflect particular features of a blast furnace, posing challenges in determining the optimal strategies for HMT forecasting. To tackle the scarcity of more comprehensive studies, this paper presents a more in-depth quantitative and qualitative analysis of machine learning models for HMT forecasting. The study involved over 80,000 temperature records and focused on evaluating the performance of models trained specifically for intra-cast (short-term) and inter-cast (longer-term) scenarios. A detailed temporal analysis revealed that the Multilayer Perceptron yielded the lowest Mean Absolute Error for two-cast-ahead prediction: 11.280 °C for a prediction horizon between 5.5 to 6 h. Considering a variety of horizons, however, simpler and more time-efficient methods, such as Linear Regression and Partial Least Squares, yielded better performance in most cases. The findings offer valuable insights for better decision-making in BF control and maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信