Huayang Lei , Jiankai Li , Shuangxi Feng , Tianlu Ma , Guoqing Zhang , Shengpeng Yu
{"title":"堆垛预制垂直排水管(S-PVD)真空预压加固效果的实例研究","authors":"Huayang Lei , Jiankai Li , Shuangxi Feng , Tianlu Ma , Guoqing Zhang , Shengpeng Yu","doi":"10.1016/j.geotexmem.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of vacuum pressure attenuation in traditional vacuum preloading ground reinforcement methods, this study proposes a stacked prefabricated vertical drain (S-PVD) vacuum preloading method based on the stratified sealing drainage technology. A comprehensive field test was conducted to comparatively analyze the reinforcement effectiveness of three vacuum preloading approaches: conventional prefabricated vertical drains (PVDs), reverse prefabricated vertical drains (R-PVDs), and the novel S-PVDs. Test results demonstrate that the S-PVD method not only significantly enhances the ground reinforcement effect, effectively increasing surface settlement and vane shear strength of the soil, but also improves the uniformity of the reinforced soil, with only a 4.6 % difference in the vane shear strength between the top and bottom of the drainage board. In addition, the S-PVD method can meet the unloading criteria in less than 30 days, reducing the consolidation period by 34.1 %. The optimized S-PVD system demonstrates notable cost-effectiveness through energy-efficient operation and accelerated consolidation, achieving 26.5 % reduction in unit area cost of materials and electricity compared to conventional vacuum preloading. These findings suggest that the S-PVD method represents a promising innovation in deep soil stabilization technology, offering a technically and economically viable solution for soft ground improvement in coastal regions.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 6","pages":"Pages 1266-1280"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement effectiveness of stacked prefabricated vertical drain (S-PVD) vacuum preloading method: A case study\",\"authors\":\"Huayang Lei , Jiankai Li , Shuangxi Feng , Tianlu Ma , Guoqing Zhang , Shengpeng Yu\",\"doi\":\"10.1016/j.geotexmem.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the issue of vacuum pressure attenuation in traditional vacuum preloading ground reinforcement methods, this study proposes a stacked prefabricated vertical drain (S-PVD) vacuum preloading method based on the stratified sealing drainage technology. A comprehensive field test was conducted to comparatively analyze the reinforcement effectiveness of three vacuum preloading approaches: conventional prefabricated vertical drains (PVDs), reverse prefabricated vertical drains (R-PVDs), and the novel S-PVDs. Test results demonstrate that the S-PVD method not only significantly enhances the ground reinforcement effect, effectively increasing surface settlement and vane shear strength of the soil, but also improves the uniformity of the reinforced soil, with only a 4.6 % difference in the vane shear strength between the top and bottom of the drainage board. In addition, the S-PVD method can meet the unloading criteria in less than 30 days, reducing the consolidation period by 34.1 %. The optimized S-PVD system demonstrates notable cost-effectiveness through energy-efficient operation and accelerated consolidation, achieving 26.5 % reduction in unit area cost of materials and electricity compared to conventional vacuum preloading. These findings suggest that the S-PVD method represents a promising innovation in deep soil stabilization technology, offering a technically and economically viable solution for soft ground improvement in coastal regions.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 6\",\"pages\":\"Pages 1266-1280\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114425000779\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000779","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Reinforcement effectiveness of stacked prefabricated vertical drain (S-PVD) vacuum preloading method: A case study
To address the issue of vacuum pressure attenuation in traditional vacuum preloading ground reinforcement methods, this study proposes a stacked prefabricated vertical drain (S-PVD) vacuum preloading method based on the stratified sealing drainage technology. A comprehensive field test was conducted to comparatively analyze the reinforcement effectiveness of three vacuum preloading approaches: conventional prefabricated vertical drains (PVDs), reverse prefabricated vertical drains (R-PVDs), and the novel S-PVDs. Test results demonstrate that the S-PVD method not only significantly enhances the ground reinforcement effect, effectively increasing surface settlement and vane shear strength of the soil, but also improves the uniformity of the reinforced soil, with only a 4.6 % difference in the vane shear strength between the top and bottom of the drainage board. In addition, the S-PVD method can meet the unloading criteria in less than 30 days, reducing the consolidation period by 34.1 %. The optimized S-PVD system demonstrates notable cost-effectiveness through energy-efficient operation and accelerated consolidation, achieving 26.5 % reduction in unit area cost of materials and electricity compared to conventional vacuum preloading. These findings suggest that the S-PVD method represents a promising innovation in deep soil stabilization technology, offering a technically and economically viable solution for soft ground improvement in coastal regions.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.